
Class-Conditional VAE-GAN for Local-Ancestry
Simulation

Daniel Mas Montserrat∗
Purdue University

Carlos Bustamante
Stanford University

Alexander Ioannidis
Stanford University

Abstract

Local ancestry inference (LAI) allows identification of the ancestry of all chromo-
somal segments in admixed individuals, and it is a critical step in the analysis of
human genomes with applications from pharmacogenomics and precision medicine
to genome-wide association studies. In recent years, many LAI techniques have
been developed in both industry [1] and academic research [2]. However, these
methods require large training data sets of human genomic sequences from the
ancestries of interest. Such reference datasets are usually limited, proprietary, pro-
tected by privacy restrictions, or otherwise not accessible to the public. Techniques
to generate training samples that resemble real haploid sequences from ancestries
of interest can be useful tools in such scenarios, since a generalized model can often
be shared, but the unique human sample sequences cannot. In this work we present
a class-conditional VAE-GAN to generate synthetic human genomic sequences
that can be used to train local ancestry inference (LAI) algorithms. We evaluate the
quality of our generated data by comparing the performance of a state-of-the-art
LAI method when trained with generated versus real data.

1 Introduction

Human populations all share a common ancient origin in Africa [3], and a common set of variable sites,
but correlations between neighboring sites along the genome, which are typically inherited together,
differ between sub-populations around the globe [4]. These correlations along the genome, known as
linkage, influence polygenic risk scores (PRS) [5], genome-wide association studies (GWAS) [6],
and many other aspects of precision medicine. Unfortunately, many of the world’s sub-populations
have not been included in modern genetic research studies with over 80% of these studies to date
including only individuals of European ancestry [7]. This severely restricts the ability to make
accurate predictions for the rest of the world’s populations [5]. Deconvolving the ancestry of admixed
individuals using local-ancestry inference can contribute to filling this gap and to understanding
the genetic architecture and associations of non-European ancestries; thus allowing the benefits of
medical genetics to accrue to a larger portion of the planet’s population.

Many methods for local-ancestry inference exist and are open-source, HAPAA [8], HAPMIX [9]
and SABER [10] infer local-ancestry using Hidden Markov Models (HMMs), LAMP [11] uses
probability maximization with a sliding window, and RFMix [2] uses random forests within windows.
However, these algorithms require accessible training data from each ancestry in order to recognize
the respective chromosomal ancestry segments.

A major challenge is that many datasets containing human genomic references are protected by
privacy restrictions [12], are proprietary [13, 14], or are otherwise not accessible to the public,
particularly datasets for under-served or sensitive populations. Generative models that can be easily
shared once trained can be useful in such scenarios. While the datasets with their de-anonymizable
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Figure 1: The class-conditional VAE-GAN is composed of 2 parts: (1) A class-conditional VAE
consisting of an encoder-decoder pair. The encoder transforms the input sequence x from the ancestry
c into an embedded representation z. The decoder transforms the embedding z and ancestry c into
a reconstruction of the input sequence, x̃ = xfake. (2) A class-conditional GAN consisting of a
decoder-discriminator pair. The decoder generates new samples xfake from a Gaussian representation
zx and ancestry c. The discriminator separates between real sequences xreal and VAE-GAN generated
sequences xfake.

genome-wide sequences remain securely private, models trained on them could be made publicly
available.

In recent years, deep learning has proven effective in solving computer vision and natural language
processing problems [15]. These methods are being used in the biology, medical and genomics fields
[16–19]. Specifically, deep learning-based generative methods have been increasingly popular in
recent years. Generative networks such as Variational Autoencoders (VAEs) [20] contain a network
that encodes the input data into a lower-dimensional space and a decoder that tries to reconstructs the
original input. Generative Adversarial Networks (GANs) [21] have been able to generate samples
that resemble the training data. GANs are able to generate realistic data by using two competing
networks: a generator that aims to create realistic new samples and a discriminator that classifies
between real and generated samples. Many variants and extensions of GANs and VAEs have been
presented recently [22–25], including class-conditional VAE-GANs [25].

In this work, we present a class-conditional Variational Autoencoder and Generative Adversarial
Network (CVAE-GAN), shown in figure 1, for human genome sequence simulation. The network
combines a class-conditional VAE with a class-conditional GAN. The network is able to simulate
new single-ancestry sequences that resemble the sequences from the training set. The generated
sequences are used to train RFMix.

2 Dataset

We train our neural network using full human genome sequences from the 1000 genomes project
[26]. We select a total of 258 single-population individuals from East Asia (EAS), African (AFR)
and European (EUR) ancestry. Specifically, we use 83 Han Chinese in Beijing, China (CHB), 88
Yoruba in Ibadan, Nigeria (YRI) and 87 Iberian Population in Spain (IBS).

Additionally, 10 single-individuals per ancestry are used to generate admixed descendants for testing
and validation using Wright-Fisher forward simulation over a series of generations. From 30 single-
ancestry individuals, a total of 100 admixed individuals are generated with the admixture event
occurring 12 generations in their past to create both validation and testing sets. The 258 single-
ancestry individuals are used to train RFMix and the class-conditional VAE-GAN, and the 200
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admixed individuals of the validation and testing sets are used to evaluate RFMix following training.
Throughout we use chromosome 20 of each individual for experiments.

3 Network Architecture

The proposed network splits the genome into fixed-size non-overlapping windows. The individual
genomic sites that vary between individuals (single nucleotide polymorphisms, or SNPs) within each
window are used as the input for individual class-conditional VAE-GAN’s. Each input SNP is encoded
as -1 or 1 for the two variants found at that site. Missing input SNPs are modeled by inputting a 0 in
the corresponding position. The CVAE-GAN’s are composed of three sub-networks: an encoder, a
decoder, and a discriminator. Each sub-network is class-conditional (i.e. the ancestry is an additional
input of the network). The encoder-decoder pair forms a VAE while the decoder-discriminator pair
forms a GAN (figure 1).

The encoder, q(x; c), transforms the input SNPs x from the given the ancestry c (represented with
one-hot encoding) into an isotropic Gaussian embedding space z. The network encodes the input
sequence to the embedding space by estimating µ(x; c) and log Σ(x; c). The variance is estimated
in a logarithmic form to force Σ(x; c) > 0. The embedded representation of a sample x from an
ancestry c can be sampled from zx ∼ N (µ(x; c), Σ(x; c)). The sampling can be performed with the
reparametrization trick: zx = µ(x; c) + Σ(x; c)� ε, where ε ∼ N (0, I) and � is an element-wise
multiplication. The encoder networks begin with an input linear layer of size (W +C)×H , whereW
is the window’s size, C is the number of ancestries, and H is the size of the hidden layer. Following
the first layer, a ReLU non-linearity and batch normalization is used. Then, two linear layers are used
with dimensions H × J , where J is the dimension of the embedding space, to estimate µ(x; c) and
log Σ(x; c).

The decoder, with a given ancestry c and embedded representation zx, tries to reconstruct the input
SNPs x̃ = p(zx; c). In order to obtain training samples for LAI methods, new sequences can be
synthetic by selecting the desired ancestry c, sampling a random embedding, z ∼ N (0, I), and
reconstructing the SNP sequence xnew = p(z; c). The decoder networks start with an input layer of
size (J + C)×H followed by a ReLU non-linearity, batch normalization and an output linear layer
of size H ×W . The discriminator network is trained to distinguish the real samples from the fake
samples ŷ = D(x; c). The discriminator networks start with an input layer of size (W + C) ×H
followed by a ReLU non-linearity, batch normalization and the output linear layer of size H × 1.

The encoder is trained by minimizing the mean square error between the input and reconstructed
sequences and the Kullback-Leibler divergence. The encoder loss function is as follows:

Lq(x, c) = ||x− x̃||22 +
1

2

J∑
j

µ2
j + Σj − log Σj − 1 (1)

where x and x̃ are the input and reconstructed sequence respectively, J is the dimension of the
embedding space, µj is the jth element of µj(x; c) and Σj is the jth element of the diagonal of
Σj(x; c). The decoder is trained by minimizing the mean square error of the reconstruction and the
adversarial loss:

Lp(x, z, c) = ||x− x̃||22 + λ1 log(1−D(p(z; c))) (2)

where p(z; c) is a synthetic sequence from a randomly selected ancestry c and z ∼ N (0, I). In our
work we select λ1 = 0.1. The discriminator is trained using binary cross-entropy with real, x, and
synthetic data, p(z; c):

LD(x, z, c) = − log(D(x))− log(1−D(p(z; c))) (3)

Because the sequence is generated in a windowed approach, a different ancestry can be assigned
to each window to simulate an admixed individual. However, in this work we focus on simulating
single-ancestry individuals. The network is trained to obtain haploid sequences, but by generating
pairs of haploid sequences, diploid chromosomes can be easily simulated. In order to avoid duplicate
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or very similar individuals, we generate N times the number of desired individuals and compute the
pair-wise correlations of the generated sequences. Then, we select the 1

N individuals with the lowest
average correlation. In this paper we use N = 2.

3.1 Location Coordinate Conditional

We present a different approach to make the CVAE-GAN ancestry-conditional. Instead of concatenat-
ing a one-hot encoding of the desired ancestry to the network’s input, two values representing the
longitude and latitude of the location of each ancestry are provided. Using geographic coordinates
for ancestry inference has been previously explored in Battey et al [27].

4 Experimental Results

We use the single-ancestry individuals of the training set to train each CVAE-GAN. After training the
networks, we generate a total of 100 synthetic samples per ancestry and train RFMix. RFMix is then
evaluated with the admixed individuals in the validation set. We select the hyper-parameters of the
CVAE-GAN (W , H and J) and the training parameters (learning rate, batch size and epoch) that
provide the highest validation accuracy of RFMix. Specifically we select W = 4000, H = 100, and
J = 10. In addition, C = 3 and C = 2 for one-hot and coordinate encoding respectively.

Finally, we compare the testing accuracy of RFMix when trained with real data as opposed to
synthetic data generated with the CVAE-GANs. Additionally, we compare the results of including
the discriminator and the adversarial loss (CVAE-GAN) with only using a CVAE. We do not compare
it with only a generator-discriminator pair, as the encoder and reconstruction loss are important
elements to enforce that the generated sequence belong to the desired ancestry.

Table 3 shows RFMix obtains comparable accuracy when trained with real and synthetic data.
Accuracy results demonstrate that adding the discriminator and the adversarial loss help the network
to learn to simulate human-chromosome sequences that are more similar to the original training data
and therefore more useful for training LAI methods, providing a significant increase in accuracy.

Table 1: Accuracy of RFMix [2] trained with real and synthetic data
Method RFMix Val. Accuracy RFMix Test Accuracy
1000 Genomes Project Data 95.57% 95.33%
Generated Data (CVAE) 91.81% 91.55%
Generated Data (CVAE-GAN) 95.60% 95.05%
Generated Data (CVAE-GAN+Coord) 95.15% 95.22%

We also analyze how similar the synthetic sequences are to the original sequences used for training.
To quantify this we perform an extensive sampling and compute the frequency of synthetic individuals
that match some training set sample (real individual) with a 99.9%, 99.99%, 99.999% and 100%
threshold. Table 2 shows the number of matches after sampling 10,000 individuals per ancestry.

Table 2: Synthetic individuals (out of 10,000) that have P% of SNPs matching a training sample.
P 99.9% 99.99% 99.999% 100%

Number of Individuals 2974 266 30 7

5 Conclusions

In this work we present a data generation method using CVAE-GANs. These networks show promis-
ing results using real human genomes from the 1000 genomes project. Strong simulation methods
allow researchers to infer ancestry using a wide-range of existing ancestry tools without needing
to have direct access to human reference data from sensitive populations, or from proprietary or
protected databases. Beyond simulation, generative models have the potential to estimate meaningful
representations in the embedding space that could be useful for data imputation or reconstruction.
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A Appendix: Results of Out-of-Africa simulations test

A.0.1 Out-of-Africa Data

We use simulated data from an out-of-Africa model created in msprime [28]. This simulation models
the origin and spread of humans as a single ancestral population that grew instantaneously into the
continent of Africa. The human population within Africa is then modeled as having a constant
population size to the present day. However, a small group of individuals are modeled as migrating
out of Africa and then splitting: founding the present day European population and the present
day East Asian population. Both are modeled as growing exponentially after their separation. The
parameters that determine the timing of these events, effective population sizes, and growth rates are
presented in Gravel et al. [29].

Following the above out-of-Africa model, we generate three groups of 100 diploid single-ancestry
individuals, one group each of African, European and East Asian ancestry. We divide these 300
simulated individuals into training, validation and testing sets with 240, 30 and 30 diploid individuals
respectively. The validation and (separately) testing individuals are used to generate admixed
descendants using Wright-Fisher forward simulation as follows. From 30 single-ancestry individuals,
a total of 100 admixed individuals are created with the admixture event occurring 8 generations in
their past, yielding both validation and testing admixed sets. The 240 single-ancestry individuals
are used to train RFMix and the class-conditional VAE-GAN, and the 200 admixed individuals of
the validation and testing sets are used to evaluate RFMix following training. Throughout we use
chromosome 20 of each individual for experiments.

A.0.2 Experimental Results

We use the single-ancestry out-of-Africa individuals of the training set to train each VAE-GAN. After
training the networks, we generate a total of 80 synthetic samples per ancestry and train RFMix. The
accuracy of RFMix trained using these synthetic samples is then evaluated by using the admixed
individuals from the validation set. We select the hyper-parameters of the VAE-GAN (window size,
hidden layer size and embedding space) and the training parameters (learning rate, batch size and
epoch) that provide the highest validation accuracy of RFMix. Finally, we compare the testing
accuracy of RFMix when trained with out-of-Africa data versus when trained with synthetic data
generated with the VAE-GANs. Additionally, we compare the results of including the discriminator
and the adversarial loss (VAE-GAN) with only using a VAE. We do not compare it with only a
generator-discriminator pair, as the encoder and reconstruction loss are important elements to enforce
that the generated sequence belong to the desired ancestry.

Table 3 shows that RFMix obtains comparable accuracy when trained with out-of-Africa and synthetic
data. Accuracy results show that adding the discriminator and the adversarial loss helps the network
to learn to synthesize human-chromosome sequences that are more similar to the original training
data and therefore more useful to train LAI methods, providing a significant increase in accuracy.

Table 3: Accuracy of RFMix [2] trained with out-of-Africa and generated data
Method RFMix Val. Accuracy RFMix Test Accuracy
Out-of-Africa Data 97.98% 97.75%
Generated Data (CVAE) 93.21% 93.05%
Generated Data (CVAE-GAN) 97.58% 97.72%
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