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Abstract. Phosphorylation is a key regulator of protein function in signal transduction pathways.
Kinases are the enzymes that catalyze the phosphorylation of other proteins in a target specific manner.
Although the advances in phosphoproteomics enable the identification of phosphosites at the proteome
level, determining which kinase is responsible for phosphorylating a site remains an experimental
challenge. Existing computational methods require several examples of known targets of a kinase to
make accurate kinase specific predictions, yet for a large body of kinases, only a few or no target sites
are reported. We present DeepKinZero, the first zero-shot learning approach to predict the kinase acting
on a phosphosite for kinases with no known phosphosite information. DeepKinZero transfers knowledge
from kinases with many known target phosphosites to those kinases with no known sites through a
zero-shot learning model. The kinase specific positional amino acid preferences are learned using a
bidirectional recurrent neural network. We show that DeepKinZero achieves significant improvement
in accuracy for kinases with no known phosphosites in comparison to the baseline model and other
methods available. By expanding our knowledge on understudied kinases, DeepKinZero can help to
chart the phosphoproteome atlas.

Introduction
Protein kinases are a large family of enzymes that catalyze the phosphorylation of other

proteins [1]. Phosphorylation involves the transfer of a phosphoryl group to the side chain of an
amino acid residue in the substrate. The amino acid residue that receives the phosphoryl group
is called the phosphorylation site, or briefly a phosphosite. Since they are the key regulators of
protein function in a broad range of cellular activities, aberrant kinase function is implicated in
many diseases [2], particularly in cancer [3, 4]. Several pathogenic human mutations also lie on
known phosphorylation sites [5]. To this end, understanding the associations between kinases and
phosphorylation sites holds the key to understand the signaling mechanisms in the healthy and
diseased cells.
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Fig. 1. The histogram of the number
of experimentally validated target phos-
phosites for human kinases in Phospho-
sitePlus database. Note that Phospho-
sitePlus reports phosphosites only for 364
of the 518 human kinases.

With 518 identified kinases in the human genome and the
transient nature of kinase-substrate interactions, it is exper-
imentally challenging to determine the cognate kinase of a
phosphosite. As underlined by a recent review [5], most of the
phosphoproteome is uncharted: more than 95% of reported
human phosphosites have no known kinase or associated bi-
ological function. There are several computational methods
available to predict phosphosites [6–13] and earlier methods
reviewed in [14]). Since they also provide kinase specific pre-
dictions, they can be used to predict associated kinases of a
known phosphosite. These methods either utilize position spe-
cific scoring matrices to estimate the position preferences of
each kinase or employ supervised machine learning models that
use a collection of established kinase-phosphosite associations
to model the relationship. However, the application of such
tools is limited to kinases for which a substantial number of
target phosphosites are available for training. For example,
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MusiteDeep [13], uses deep learning to predict binding sites
for kinases, and it exclusively focuses on kinase families with at least 100 experimentally verified
phosphosites. Existing computational methods require several examples of known phosphosites of a
kinase to make accurate predictions, yet for a large body of kinases no or only few target sites are
reported (Figure 1). We present DeepKinZero, the first zero-shot learning approach to predict the
kinase acting on a phosphosite for kinases with no known phosphosite information.
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Fig. 2. Overview of the application of
zero-shot learning to the prediction of
kinase-phosphosite associations.

Zero-Shot Learning Model
Zero-shot learning aims at solving classification problems wherein
the available training data does not contain examples of the
desired classes [15]. The key to making predictions for classes
with no training data (referred to as unseen or zero-shot classes)
is to have side information which can be used to relate the classes.
Based on these relations among classes, it becomes possible to
transfer the knowledge obtained from classes that have positive
training samples (referred to as seen class) [15] to the previously
unseen classes. In this problem, we do not observe any phos-
phosites that are associated with a rare kinase (unseen class) in
training, the zero-shot learning framework enables us to recog-
nize a target site of this kinase by transferring knowledge from
common kinases to the rare kinases. This can be achieved by
establishing a relationship between the kinases using relevant
auxiliary information, such as functional, sequence and structural
characteristics of kinases. Figure 2 illustrates this idea.

DeepKinZero takes the sequence of 15 residues centered on the phosphosite as input. We denote
the associated kinase with class label y. The problem is formalized as a multi-class classification
problem with many classes, where each input phosphosite sequence is associated with a kinase.
For each kinase y ∈ Y , a “kinase embedding” vector φ(y) ∈ Rm is computed based on information
available on kinases. Following the work in structured output prediction [16] and prior work in
zero-shot learning [15,17–22], we use a compatibility function F : X ×Y → R to model the mapping
between the input and output embeddings. In this model, F takes a phosphosite - kinase pair (xi, yj)
as input and returns a scalar value which is proportional to the confidence of associating the site, xi,
with kinase yi. The probability that a given site is a target of a given kinase is calculated logistically
from the compatibility function F :

p(y|x) =
exp(F (x, y))∑

y′∈Yte
exp(F (x, y′))

(1)

As in [22], we use the following bi-linear compatibility function for input x and y :

F (x, y,W ) = [θ(x)> 1]W [φ(y)> 1]>. (2)

Kinase and Phosphosite Embeddings: We use four different data sources to represent kinases i)
kinase hierarchy information as obtained from kinase.com, ii) Enzyme Commission(EC) classification
of kinases, iii) ProtVec representation of kinase domain sequences, and iv) participating in common
KEGG pathway. We expect “similar” kinases to be close according to the Euclidean metric in
the embedded space. Similarly, for each phosphosite x ∈ X , we compute phosphosite embedding
vector, θ(x) ∈ Rd, that represents the phosphosite sequence in a d-dimensional space. To learn
this embedding, we use two layers of Bidirectional Recurrent Neural Networks(BRNN) followed
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by a dot attention layer over phosphosite embeddings. To avoid overfitting, we employ drop-out
regularization. We also applied batch normalization to the output of LSTM cells to normalize the
embeddings passed onto the ZSL model. The overall architecture is provided in (Figure 3).
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Fig. 3. The DeepKinzero model.

Model Training: We train the model end-to-
end by connecting the BRNN model to ZSL
model (Figure 3) by minimizing cross-entropy
loss using Adam optimizer [23]. We employ drop-
out regularization [24] and batch normalization
in LSTM cells [25] to normalize the embed-
dings passed onto the ZSL model. The attention
weights are initialized randomly from a normal
distribution with a mean of 0 and standard devi-
ation of 0.05. The learning rate and the number
of iterations are optimized on validation data
(see below for an explanation of the validation
data). To reduce the variance of the model, we
ensemble 10 models each of which trained with
different initializations of the model parameters.

The final class probabilities are obtained by averaging output probabilities over the ensemble.

Data Sources and Evaluation: We train and evaluate our models on the experimentally validated
kinase-phosphosite associations obtained from the PhosphoSitePlus database [26]. After removing
isoform and fusion kinases, following the evaluation protocol suggested in [17], we split the data into
training, validation and test sets based on the number of sites that are associated with each kinase.
Kinases with more than five sites are considered as training classes. The BRNN model and zero-shot
learning models are trained on this set, which contains 12,901 phosphorylation sites associated with
a total of 214 kinases. The validation set includes the kinase-phosphosite associations of kinases for
which there are exactly five phosphorylation sites. This validation set includes 80 phosphorylation
sites interacting with 17 different kinases. The remaining kinases with less than five positively
labeled examples constitute the test or zero-shot classes. The test data includes 237 phosphorylation
sites that belong to 112 classes.
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Fig. 4. Performance comparison of the models with
the site sequence embeddings and with and without
using a BRNN.

Results
Performance: Figure 4 summarizes the results of us-
ing different phosphosite sequence embeddings. With
respect to hit@1 and hit@3 metrics, the model trained
with a BRNN coupled with ProtVec vectors performs
the best, where the true kinase is predicted as the top
kinase for more than 20% of the sites, and it is among
the top 3 for more than 30% of the sites. With respect
to hit@5 metric, the input representations have less
effect on the prediction performance, where amino
acid properties with BRNN delivers the highest hit@5
accuracy with the true kinase being among the top
5 for more than 40% of the sites. Additionally, we
observe that the use of BRNN model improves the
performance. The model without BRNN embeddings
that uses One-Hot sequence embedding as input only
returns the true kinase as the top prediction in 10.55% of the test cases. On the other hand, the
model with BRNN and ProtVec site embeddings predict the right class with 21.52% accuracy.
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Note that random guess will achieve only 0.89% accuracy since there are 112 test classes. We also
evaluated different combinations of kinase embedding (data not shown). The kinase hierarchy of
kinases contributes the most to the accuracy of the model, achieving 17.72% accuracy when used as
the sole auxiliary information on kinases.
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Fig. 5. (Best viewed in color) a) Average attention weights of
the residue positions calculated over the ensemble BRNN model.
Residue position 0 is the phosphosite position. b) Average zero-
shot learning weights for each amino acid type at the phosphosite.

Comparison with Other Methods:
In the literature, there are no models
that we can directly compare our method
against as they do not make predictions on
the understudied kinases. However, there
are two methods [27,28] that aim at a dif-
ferent but a related problem. They predict
the phosphosites for kinases with no known
sites, which is the reverse scenario of our
problem; we predict the kinase of a given
phosphosite. Predikin [27] operates with
a set of rules governing the amino acids
around the phosphosites that are derived

from 3D structures of kinases bound to their substrates. Because the Predikin server was not
available, we were not able to carry out a comparison with this method.

The method proposed by [28] is based on the idea that, as compared to a random set of proteins,
interaction partners of a kinase are more likely to be phosphorylated by that kinase. The method
finds enriched motifs in the interaction partner sequences and use these motifs to predict protein
sequences that a kinase can bind to. Our method predicts the kinase of a given phosphosite, whereas
Wagih et al. predicts the phosphosite of a kinase. Thus, the two methods are not directly comparable
but still, we conduct the following comparison. For the 112 zero-shot kinases, we predict the motifs
by Wagih et al. model. If we consider the top motif returned, the method correctly matches 11
of the phosphosites of the 112 kinases, leading to 9.8% hit@1 accuracy. If we consider the top 5
motifs returned for each kinase, the correct phosphosite sequence matches 26 of phosphosites of the
112 kinase motifs leading to 23% hit@5 accuracy. These numbers are significantly lower than what
DeepKinZero can achieve (21.52% and 40.08%).

Validation on an External Data: We also evaluated DeepKinZero on an external test data we
had retrieved from PhosphoELM database [29]. We removed all the kinases and their associated
phosphosites that were in our training and validation set from PhosphositePlus dataset. DeepKinZero
trained on PhopsphositePlus and evaluated on this PhosphoELM dataset achieves hit@1 accuracy of
33.96%, hit@3 accuracy of 52.83%, 62.26% hit@5 accuracy and 77.36% hit@10 accuracy. Although
the dataset is small, it provides confidence that the model generalizes to other datasets.

Inspecting the Model Weights: We further analyze the learned weights in the model to gain
further insight into the model. First, we inspect BRNN attention weights. Figure 5a shows the
average attention assigned to each position in the input sequence by the BRNN model. The center
residue emerges as the most important residue, thus the model correctly learns to assign more
weight to the center, where the phosphosite is located at. The immediate neighbors and the residues
within 2 positions are the next most important residues. To investigate the weights assigned to
each amino acid type at the phosphosite embedding, we calculate the average weights assigned to
different amino-acid types for each group of kinases at the phosphosite. As clearly seen in Figure 5b
S, Y and T correctly receive the largest weights. Moreover, the weights assigned to a different type
of amino acids in each group align well with existing knowledge of kinase groups. For example, the
TK family, which exclusively works on thyrosine residue (Y), puts a very large positive weight on
tyrosine while other families do not.
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