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Abstract

Optimizing foreign DNA sequences for maximal
protein production in a specified host organism is
an important problem for synthetic biology and
biomanufacturing. Experimental results have
demonstrated that simply interchanging codons,
triplets of three DNA bases, with synonymous
alternatives can in fact amplify protein produc-
tion several-fold while holding the produced pro-
tein constant. Previous methods for codon opti-
mization are frequency based, which cannot con-
sider factors such as RNA secondary structure
that contribute to protein expression. Here, we
apply a deep learning framework to model the
distribution of codons in highly expressed bac-
terial and human transcripts. We show that our
LSTM-Transducer model is able to predict the
next codon of a genetic sequence with improved
accuracy and lower perplexity on a held out set
of transcripts, outperforming the previously state
of the art frequency-based approach to modeling
codon distribution.

1. Introduction
The ability to express recombinant proteins, proteins artifi-
cially designed or extracted from a different species, has
been pivotal in all of biology. Expression of recombi-
nant proteins in different host organisms has applications
from basic research to industrial production of therapeutics
(Xiao et al., 2014). Naturally, increasing the expression
level of these recombinant proteins in a host organism such
as E.coli is highly relevant as it can allow for more robust
experimentation and more efficient biomanufacturing. Out-
side of manufacturing, codon optimization in humans will
be important for the next wave of gene therapies (Mauro &
Chappell, 2014).
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Traditional biological approaches to increase the expres-
sion of recombinant proteins have included selecting strong
promoters, enhanced cell proliferation, and codon opti-
mization (Xiao et al., 2014; Sivashanmugam et al., 2009;
Rosano & Ceccarelli, 2014; Zhou et al., 2016). In this
work, we focus on codon optimization. Despite the im-
portance of codon optimization, computational methods for
this task remain naive and ad hoc, unable to capture deeper
complexities of a given DNA sequence such as mRNA
folding that have recently been shown to influence the op-
timal choice of codons (Kudla et al., 2009; Cambray et al.,
2018; Goodman et al., 2013).

In this work, we propose combining an encoder network on
the entire sequence of amino acids with a neural language
model (NLM) to capture the native distribution of codon
choice in highly expressed genes of a host organism. This
yields higher accuracy and lower perplexity than the sim-
pler, frequency-based approach.

2. Related Work
Related computational methods to perform codon opti-
mization rely primarily upon the natural codon usage bias
of the target organism. Methods like “Optimizer” finds
the codon frequencies present in highly expressed genes to
construct a “codon adaptation index” (CAI), which is then
used to determine the codons (Puigbo et al., 2007a).

A recent platform, “Presyncodon” uses machine learn-
ing, specifically a local random forest classifier, to pre-
dict codons. They use their classifier to predict the middle
amino acid in a sequence of up to 7 amino acids in E. coli
(Tian et al., 2017). While the authors report a 97% accuracy
in predicting the correct codon choice when trained with 64
available E. coli genomes on a held out genome, they do not
exclude homologous genes from the same species in their
test set nor use a non-local model. Still, these groups of
frequency based methods are limited to consider only lim-
ited local context, motivating our use of N-gram baselines
that consider only the N nearest amino acids to predict the
codon of interest (Brown et al., 1992).

To our knowledge Fujimoto et al. present the only prior
work that uses neural networks for the task of modeling
natural codon distributions (Fujimoto et al., 2017). They
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frame codon optimization as a neural machine translation
problem and broadly predict the codons related to all E.
coli genomes. However, in the same vein of Presyncodon,
they train their model on pooled sequences of 159 differ-
ent E. coli strands before further fine-tuning on a specific
E. coli genomes, which produces near 100% accuracy on
the downstream task. We develop a closely related neural
architecture that tightly couples amino acid encodings and
prediction outputs, while also following a more principled
test-train split.

A key use case for codon optimization is the expression
of heterologous proteins that are very different from any-
thing in the wild-type proteome, such as expressing hu-
man proteins in bacterial cells or vice versa (Gustafsson
et al., 2004). We therefore need to ensure that our method
can generalize well. Previous work has focused on intra-
species generalization, using homologs of a given protein
found in different strains of the same species to predict
codon usage in a held-out strain. Since different strains
can be nearly identical at the nucleotide level and previ-
ous work fails to quantify this similarity, their training and
testing sets are potentially nearly identical. The question
of how well neural codon optimization methods can gener-
alize to proteins outside the wild-type proteome therefore
remains open.

Additionally, a separate line of investigation has considered
the task of optimizing codons in the presence of experimen-
tal data (Gonzalez et al., 2015; Tunney et al., 2018). Unlike
these approaches, we consider the case in which only have
access to a set or subset of native gene sequences.

3. Methods
3.1. Model

We view codon optimization through the lens of an neu-
ral language modeling problem. Let X be a sequence of
N amino acids x1, . . . , xN defining a single gene, where
xi ∈ X , |X | = 20, denoting the 20 possible amino acids.
We are interested in producing codons Y = [y1, . . . , yN ]
corresponding to each position, such that the sequence Y is
functionally preserving for X . We say that yi ∈ Y, |Y| =
64, denoting all possible triplet permutations of the DNA
nucleotides, A, T,G,C. Since we are interested in model-
ing the codon usage patterns of highly expressed genes, we
specify z as the protein expression level. Thus, we model
P (Y |X, z), and assume z = zmax by training only on a
subset of highly expressed genes.

In our neural models, we want to consider both information
at the codon level and at the amino acid level. The intu-
ition behind this is that amino acid xj can inform the codon
choice for yi for i 6= j. By passing contextual information
from across the amino acids [x1, ..., xN ], our models can

incorporate long range dependencies.

To give our models these desired properties, we use a
simplified architecture inspired by the transducer model
(Graves, 2012). On top of a codon-level language model
that models p(yi|y1, y2, . . . , yi−1), the transducer adds an
amino-acid level positional encoding. This encoding is
used in combination with the codon-level language model
to predict the distribution over the next codon in sequence,
taking into account both previously generated codons and
the future codons that must be produced. The amino-acid
level encoder is trained jointly with the language model
(Figure 1). More formally, if we refer to our encoder net-
work over the amino acid sequence, X , as Enc(X), our
prediction network as Pred, and a simple linear transfor-
mation as g, then we get our model structure:

p(yt|X, y1:t−1) = softmax(g(Pred(y1:t−1), Enc(X)t))

3.2. Encoder Network

For the encoder, we define a Bidirectional LSTM that
can model long-term dependencies, and tackle the limita-
tions of n-gram models. Specifically, we consider a BiL-
STM that explicitly takes into account information of lo-
cal and distant amino acids. LSTM Networks are an es-
pecially promising model choice for biological sequence
modeling, which may include components such as tran-
scription factor binding sites that modulate gene expres-
sion and involve the interaction of DNA base-pairs several
tens of codons away (Sønderby et al., 2015). We choose to
use bidirectional models such that the encoding produced
by this architecture can capture sequence level informa-
tion at the whole sequence for a single encoding position
Enc([x1, x2, ..., xN ])i.

3.3. Prediction network

Next, we define a unidirectional, autoregressive LSTM
over the produced codons that is able to produce hidden
hidden representations:

Pred([y0, y1, .., yn−1]) = LSTM([y0, y1, .., yn−1])

= [h0, h1, .., hn−1]

Each hidden state hi of the prediction network is concate-
nated with the output of the encoder network, which is fed
jointly as input to a final linear layer to predict the follow-
ing codon.

3.4. Dataset

We retrieve the set of highly expressed genes of Escherichia
coli strain K-12 substrain MG1655 and the set of all genes
from NCBI (ref seq: NC 000913.3) (Puigbo et al., 2007b).
We remove four genes from the set of highly expressed
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Figure 1. The codon-transducer architecture. An encoder network (BiLSTM) maps input amino acids x1, ...xN to produce transcription
vector fn, which gets concatenated to outputs from a separate prediction network taking in previous outputs y1:t−1 as input for language
modeling.

genes not found in the current gene set, leaving a dataset
of 249 highly expressed sequences with 85,899 codons
(4,096 non highly expressed genes). We also retrieve a
larger set of human housekeeping genes, which contains
3,769 sequences and 1,839,633 codons (Eisenberg & Lev-
anon, 2013). Each codon was encoded in a one hot en-
coding of dimension 67 and the amino acids were encoded
into a one hot encoding of dimension 23, with three extras
(〈pad〉, 〈start〉, and 〈unk〉) from the tokenizer. We note
that we account for species-specific alternate start codons
by switching the first amino acid to a 〈start〉 token. The
high expression gene sequences were randomly separated
into 80/20 splits and the human genes were filtered for
highly similar sequences found through CD-HIT program
(Li & Godzik, 2006).

3.5. Implementation Details

Because the set of highly expressed genes in E. coli is
small, we first pretrain our E. coli models on the set of all
non-high expression E. coli genes for up to 60 epochs. On
the larger dataset of highly expressed human transcripts,
we train for up to 60 epochs. Each model was trained with
a batch size of 10. We also employ teacher-forcing for re-
current language models and codon-level masking for all
models at test time because the true amino acid xi is known
at each step. Masking ensures the model is always con-
strained to make a choice among the corresponding codons
for xi. Loss was calculated by taking the cross entropy loss
between the predicted codons and the target codons, and
trained using the Adam Optimizer with default parameters.

n-grams Inspired by previous, frequency-based methods,
for each n-gram model, we calculate the full distribution

of the middle codon for every n gram set of amino acids.
The 1-gram, “unigram” model is equivalent to choosing the
most frequent codon for each amino acid in the training set.
The 1, 3, 5-gram denotes an ensemble method that weights
the predictions of a unigram, trigram, and a 5-gram model
for final output. The weights are identified through per-
forming a grid search over possible weights. For this, the
train set is further split into train and validation. We find
1, 3, 5-gram weights of [0.7, 0.3, 0] and [0.4, 0.6, 0] per-
form best for E. coli and humans respectively.

LSTM Transducer We used a standard bidirectional
LSTM architecture over the amino acid sequence as our en-
coder network. For both the E. coli and human gene mod-
els, this network has an hidden layer of size 100, 2 layers,
and internal dropout of 0.1. We additionally test model per-
formance using this encoder layer that does not depend on
the set of previously outputted codons.

For the generative model over codon sequence, we use a
one-directional LSTM. For the E. coli model, this network
has an embedding dimension of size 50, hidden dimen-
sion of size 50, 1 layer, and internal dropout of 0.1. For
the larger human model, we use an embedding dimension
of size 50, 150 hidden dimension, 2 layers, and internal
dropout of 0.1. The representation of the target amino acid
and output of the generative model are concatenated. We
apply dropout of 0.1 to this output, apply a linear layer, and
take a softmax to generate outputs.

The models discussed in this paper were implemented us-
ing PyTorch. 1

1https://github.com/samgoldman97/
Codon-Optimization

https://github.com/samgoldman97/Codon-Optimization
https://github.com/samgoldman97/Codon-Optimization
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E.coli HEG Human HEG
Model Train Acc Test Acc Train Ppl Test Ppl Train Acc Test Acc Train Ppl Test Ppl
Unigram AA 0.6279 0.6246 2.7124 2.7490 0.4373 0.4313 3.6519 3.6655
Trigram AA 0.6910 0.6280 - - 0.5060 0.4932 - -
5-Gram AA 0.9829 0.3730 - - 0.7951 0.3948 - -
1,3,5-gram AA 0.6668 0.6380 2.5127 2.6786 0.5042 0.4920 3.5455 3.5718
BiLSTM Encoder Only 0.6930 0.6604 2.0004 2.1152 0.5623 0.5186 2.6189 2.7906
LSTM Transducer 0.7119 0.6700 1.9341 2.0870 0.5649 0.5538 2.6017 2.6342

Table 1. Evaluation metrics for our neural and n-gram models. AA denotes amino acid-level input. Perplexity is omitted for models that
give zero probability weight to the correct codon in the test set, specifically trigram’s and 5-gram’s. We note that transducer architecture
achieved lowest perplexity (PPL, the lower the better) and highest accuracy during testing. We include full model parameters and
descriptions in Methods.

3.6. Evaluation Metrics

To evaluate performance, we compared both accuracy and
perplexity (PPL) across trained models. Accuracy was cal-
culated by generating a reverse translated DNA sequence
given a protein, and examining how many of the codons
were predicted correctly. The reduced perplexity with our
transducer model indicates less confusion over the distribu-
tion of codons. Perplexity was computed by exponentiating
average cross entropy loss for the neural models and expo-
nentiating the average negative log likelihood for frequency
baseline models. We find this to be important because in
a biological context, we often desire to ancestrally sam-
ple several plausible sequences for experimentation from
a distribution and experimentally test these. Finally, when
evaluating accuracy and PPL on the test set, we use teacher
forcing for the top level language model.

4. Results
We present our results with respect to accuracy and per-
plexity (PPL) in Table 1. We see that the deep BiLSTM
and LSTM Transducer models both out perform the stan-
dard frequency based approaches in accuracy and perplex-
ity on the test set, indicating that these models have learned
more complex underlying features than frequency alone.
Curiously, we see only marginal improvements in accu-
racy between the baseline and neural models, with larger
boosts in perplexity. Because we evaluate our transducer
model as a language model predicting next codon given
the true previous codon at test time, the results are slightly
biased toward this approach. Nonetheless, the BiLSTM
encoder-only model demonstrates near equal performance
and boosts in perplexity over the baseline methods with no
knowledge of previous codons.

5. Discussion and Future Work
We introduce a generative modeling approach for codon
prediction and optimization. We present an LSTM-
transducer model which achieves better predictive accuracy

and modeling performance on a left out test set of the E.coli
and human sets of highly expressed genes. While we im-
prove perplexity over these distributions substantially, im-
provements in accuracy are not drastic, leading us to be
cautiously optimistic about the potential for neural models
in this space and wonder if the selective pressure on natural
codon choice is sufficient for this task.

In addition to applications for codon optimization, we also
envision ways in which similar models over codon space
can be used for horizontal gene transfer identification, sim-
ilar to how the CAI has been used in the past (Lawrence &
Ochman, 1997).

Dataset limitations A critical limitation of this work is that
our training set is limited to the genes of the target organ-
ism. This problem is only exacerbated by our decision to
target highly expressed subsets of genes that we believe
may have a higher signal for modeling. This was partic-
ularly problematic for the small genome size of E. coli,
which we supplemented with pretraining on the full gene
set. In the future, this set of genes could be augmented with
experimentally derived, non-endogenous sequences of high
expression available from previous experimental projects,
perhaps offering more signal (Goodman et al., 2013; Cam-
bray et al., 2018). Modeling the untranslated region (UTR)
in addition to the coding sequence could also prove impor-
tant. Furthermore, experimental readouts invite additional
work aimed at conditional generation models to produce
codons with a desired expression.

As indicated by our results on a principled test-train split of
the data, we find that the problem of modeling codon distri-
butions remains an open question. Based on our findings,
we are hopeful that the incorporation of different genera-
tive models and experimental datasets will prove useful in
advancing this field.
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7. Appendix
7.1. Impacts of pretraining

We test the impact of pretraining the E. coli model on the
full set of non highly expressed genes by training a model
exclusively on the small set of highly expressed genes.
Curiously we see that these models still have comparable
and favorable performance, indicating that pretraining of-
fers only small boosts in performance (Table 2). Addition-
ally, we tested the accuracy of the models on the highly ex-
pressed genes after pretraining on the non highly expressed
genes, prior to fine-tuning to make sure there was no data
leakage between train and test. The pre-fine tuning accu-
racy was lower than the fine-tuned values, 0.6001 accuracy
(2.3469 ppl) for the only BiLSTM model and 0.6345 ac-
curacy (2.221 ppl) for the LSTM Transducer model on the
HEG training set.

Model Train Acc Test Acc Train Ppl Test Ppl
BiLSTM Encoder 0.6733 0.6513 2.0749 2.1468
LSTM-Transducer 0.6856 0.6553 2.0275 2.1331

Table 2. Modeling codon bias in E. coli without pertaining on
non-highly expressed genes.

7.2. Secondary structure of predicted mRNA

Once we train our models, we generate full sequences of
codon predictions over the test set with all models. Next,
we predict the secondary structure, measured by the mini-
mum free energy (MFE) through the ViennaRNA package
(Lorenz et al., 2011). We calculate the MFE for the first
36 nucleotides of the sequences. This is motivated by ex-
isting experimental work that implicates the importance of
the positions −4 to 37 of the sequence (Kudla et al., 2009).
While further work is in order to verify that the model has
learned anything about RNA structure or the actual biology
of the free energy, we compare the MFE of the generated
sequences and true sequences as a non-local metric to eval-
uate our sequence predictions.

We compute the Spearman rank correlation between the
MFE of target sequences and MFE of model-generated se-
quences with the true sequences in the test set (Table 3). In
addition, we report the codon level accuracy of these mod-
els on only the first 36 nucleotides (12 codons). Despite
having comparable codon-level accuracy as the frequency
models, we find that the MFE of sequences generated by
our LSTM Transducer model has an increased Spearman
rank correlation with the true MFEs than frequency based
approaches. However, given the earlier discussion regard-
ing the limitations of our model, this result is not suggestive
of whether the model is learning long-term interactions and
secondary structure of the RNA.

Species Model Spearman’s ρ p-value Acc (+36)

E. coli
Unigram 0.432 0.0017 0.518
1,3,5-gram 0.523 9.89e-05 0.527
LSTM Transducer 0.584 8.54e-6 0.520

Human
Unigram 0.562 4.27e-64 0.469
1,3,5-gram 0.584 4.43e-70 0.511
LSTM Transducer 0.639 1.11e-87 0.525

Table 3. Evaluation of generated full length codon sequences.
Rank correlation between the MFE values of target sequences
and model predicted sequences in the test set. The accuracy
is taken between the completely generated sequences (without
teacher forcing) and the true sequence averaged over the first 36
nucleotides.


