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Abstract

X-ray crystallography is the most commonly used technique to determine three-
dimensional structures of macromolecules. Despite its prevalence, protein crys-
tallization is still a trial and error process that requires random screening using
an extensive number of conditions. This motivates us to model the relationship
between protein sequence and its crystallization conditions. Using deep learning
on crystallization conditions extracted from the Protein Data Bank, we demonstrate
that it is possible to predict crystallization conditions for a given sequence. Accu-
rate condition prediction would facilitate more focused condition screening, which
would reduce the time and cost required to generate diffraction quality crystals.

1 Introduction

Elucidating three-dimensional macro-molecular structures is of central importance to understanding
their biological function, but it remains a major challenge. One of the most powerful methods to
solve three-dimensional structures is X-ray crystallography, with more than 90% of the structures
found in Protein Data Bank (PDB) solved with this method to this date [3]. However, producing a
diffraction-quality protein crystal remains a bottleneck for X-ray crystallography. A large number of
parameters affect crystallization outcome and current methods rely on trial and error sampling of the
chemical space within crystallization conditions [16]. Crystallization protocols involve randomly
screening hundreds, if not thousands, of buffer conditions using kits and robots [18]. ]. Even so, less
than 2-10% of cloned proteins yielded diffraction quality crystals [19]. The time, cost and success
rate associated with crystallization hampers the viability of X-ray crystallography and thus our efforts
to understand the fundamental chemistry of life.

We aim to reduce the crystallization condition search space by learning the mapping between protein
sequence and the conditions required to form its crystal. To achieve our goal, we extract sequence
and crystallization conditions from the PDB and train a neural network to learn the mapping between
the two. This approach can drastically reduce the number of conditions screened by identifying a
subset of conditions that maximize the probability of crystal yield.

We formulate the crystallization condition prediction problem as a multi-label classification task.
Given an input protein sequence, X, the goal is to predict binary vector, Y, where each position
corresponds to a different crystallization term. We define crystallization term as the elements found
within crystallization conditions, which includes technique, buffer, salts and other precipitating agents
such as PEG, that are used to crystallize the protein.
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In this work, we evaluate several deep learning architectures for predicting crystallization conditions,
including feed-forward neural networks (FFN) and convolutional neural networks (CNN). Through
various metrics, we demonstrate that crystallization conditions can be predicted using a machine
learning-based approach. Our findings suggest that computationally driven condition screening is
feasible.

2 Related Work

We review computational predictions applied to various aspects of protein crystallization.

Crystallization Propensity. Some protein sequences tend to have higher crystallization propensity
than others. Kurgan and Mizianty [15] found that only 4.6% of crystallization attempts successfully
yielded diffraction-quality crystals. Janhandideh and Mahdavi [10] trained random forest models
to predict crystallization propensity using various features, including amino acid compositions,
isoelectric point, sequence length, and molecular weight. Wang et al [20] applied support vector
regression (SVR) models to predict the propensity, as well as the success rates of other experimental
procedures including sequencing cloning, protein material production, protein purification, crystal
production, and structure determination. More recently, DeepCrystal applied a Convolutional Neural
Network (CNN) to predict crystallization propensity using only the protein sequence [9].

Crystallization Outcome Classification. Crystallization robots can screen through thousands of
different conditions per day. To further increase the throughput, automated image classification
algorithms can be used instead of human experts to identify the formation of crystals. Cumbaa et al
applied various models, including decision trees and support vector machines, to classify the presence
of crystals from an image [7]. More recently, Bruno et al found that CNN can achieve 94% test
accuracy on the Machine Recognition of Crystallization Outcomes (MARCO) data set [4].

Crystallization Conditions. To reduce the number of trial and errors, different approaches attempted
to identify ideal crystallization conditions for an arbitrary protein. Kimber et al suggested building
screens using conditions that had high success rates [12]. Cumbaa et al applied association mining to
group together proteins based on their crystallization conditions [8]. Other work explored correlating
buffer pH with the protein isoelectric point to predict the crystallization conditions [11, 5, 21, 14].
However, recent studies suggests that the previous findings were not significant since, on average,
crystallization occurs at neutral pH [13]. More recently, Abrahams and Newman [2] found no
correlation between BLAST sequence similarity score and crystallization conditions for non-identical
sequences.

To the best of our knowledge, direct prediction of crystallization conditions from raw sequence has
not been explored.

3 Processing Protein Data Bank Files

We generated our dataset by extracting protein sequences and crystallization conditions from headers
SEQRES and REMARK 280, respectively. Since crystallization conditions are written in free text
format, we used a two step-approach to transform the text into structured data: 1). We generate the
output domain by filtering for words (chemicals and techniques) with at least 50 occurrences, as
words below this cutoff were mostly entered incorrectly (i.e spelling mistakes). 2). We implemented
annotation mapping to remove the redundancy resulting from the use of either chemical formulas or
names, as well as the same ions appearing in more than a single compound. This process resulted in
192 crystallization terms that consist of chemicals and crystallization techniques. After filtering out
PDB files without any annotation and files with sequence lengths greater than 2000, we were able to
curate data from 71659 PDB files.

4 Experiments

4.1 Model Architectures and Input Processing

The following hyperparameters were used for all models: Relu and sigmoid activation functions were
used for our hidden layer and output layer, respectively. All models were trained for 500 epochs. We

2



also used ADAM [13], with a learning rate of 0.0005 and mini-batch size of 64. We train the models
by minimizing the binary cross-entropy loss. The models were implemented using Keras [6] with a
Tensorflow backend [1].

Our FFN architecture consists of three layers with 2048, 1024, and 512 nodes. Our CNN architectures
consist of N number of 1-D convolutions with 16 filters and a window size of 50, followed by two
feed-forward layers with 1024 and 512 nodes.

We process the protein sequences and their respective crystallization terms as one-hot encoded vectors.
The protein sequences were padded with zeros to the max length (2000). We randomly split the data
set into 90% and 10% for training and testing sets, respectively. 10% of the training set was randomly
chosen to be used as the validation set.

4.2 Evaluation

Table 1: Weighted Precision, Recall and F1-Scores for crystallization condition prediction different
architectures on predicting crystallization conditions. Top values are in bold for each metric.

Architecture Validation Set Test Set
Precision Recall F1-Score Precision Recall F1-Score

FFN 0.628 0.325 0.356 0.631 0.337 0.364
1-CNN 0.551 0.414 0.454 0.550 0.423 0.461
3-CNN 0.518 0.421 0.447 0.524 0.431 0.456
5-CNN 0.503 0.417 0.440 0.551 0.423 0.447

Table 1 shows the performance comparison between FFN and CNN with a varying number of
convolutional layers. To address the label imbalance, we calculated the weighted precision, recall,
and f1-score for each model: for each label, the metrics are calculated and weighted by their frequency.
FNN model achieved F1-score of 0.364 while the 1,3 and, 5-layer CNN achieves 0.461, 0.456 and
0.447, respectively. We observe that models with convolutional layers achieve higher F1-score, which
suggests the importance of sequence locality for predicting crystallization conditions.

4.3 Filter Visualization

Figure 1 shows the filter position weight matrices (PWMs) for the first convolutional layer, using top
1% and top 5% of the filter weights. Interestingly, amino acids with the highest weights correspond to
hydrophilic and neutral residues, whereas the majority of negative weights correspond to hydrophobic
residues. Intuitively, we expect hydrophilic residues to have a strong influence on the buffer conditions
since these residues affect the isoelectric point of a protein.

5 Conclusion and Future Work

Here we introduce a new problem of predicting crystallization conditions and demonstrate that
deep learning methods enable accurate prediction of those conditions from sequence alone. We
describe how data was generated for training and evaluation by parsing through PDB files using a
two-step approach. Furthermore, we found that convolutional neural networks achieved the highest
performance.

Price et al [17] suggest that the dominant factor for crystallization propensity is the presence of well-
ordered surface epitopes that mediate inter-protein interaction. The features extracted from the filters
may reflect local secondary structures and influence the conditions required. Further investigation is
required to understand the influence of secondary structures on crystallization conditions.

Though here we focused exclusively on the crystallization terms, in future we may extend our model
to include other variables such as temperature and pH. Also, rather than treating buffers as a class,
we can train our models to directly infer the concentration of each buffer. We believe that our work
complements other methods that focus on crystallization propensity and crystal image processing.
We propose that a combination of these tools can be used to accelerate structure determination by
X-ray crystallography.

3



0 10 20 30 40 50

0.04

0.02

0.00

0.02

0.04

0.06

0.08

filter: 0

0 10 20 30 40 50
0.10

0.08

0.06

0.04

0.02

0.00

0.02

0.04

filter: 1

0 10 20 30 40 50

0.04

0.02

0.00

0.02

0.04

filter: 2

0 10 20 30 40 50
0.10

0.05

0.00

0.05

0.10

filter: 3

0 10 20 30 40 50
0.15

0.10

0.05

0.00

0.05

0.10
filter: 4

0 10 20 30 40 50
0.10

0.08

0.06

0.04

0.02

0.00

0.02

0.04

filter: 5

0 10 20 30 40 50
0.06

0.04

0.02

0.00

0.02

0.04

0.06

0.08

0.10
filter: 6

0 10 20 30 40 50

0.04

0.02

0.00

0.02

0.04

0.06

0.08

filter: 7

0 10 20 30 40 50

0.04

0.02

0.00

0.02

0.04

filter: 8

0 10 20 30 40 50
0.10

0.05

0.00

0.05

0.10

filter: 9

0 10 20 30 40 50
0.10

0.08

0.06

0.04

0.02

0.00

0.02

0.04

filter: 10

0 10 20 30 40 50
0.100

0.075

0.050

0.025

0.000

0.025

0.050

0.075

filter: 11

0 10 20 30 40 50
0.15

0.10

0.05

0.00

0.05

filter: 12

0 10 20 30 40 50

0.04

0.02

0.00

0.02

0.04

0.06

0.08

0.10
filter: 13

0 10 20 30 40 50
0.15

0.10

0.05

0.00

0.05

0.10

0.15
filter: 14

0 10 20 30 40 50

0.04

0.02

0.00

0.02

0.04

filter: 15

(a) Top/Bottom 1%

0 10 20 30 40 50

0.10

0.05

0.00

0.05

0.10

filter: 0

0 10 20 30 40 50
0.15

0.10

0.05

0.00

0.05

0.10

filter: 1

0 10 20 30 40 50

0.10

0.05

0.00

0.05

0.10

filter: 2

0 10 20 30 40 50

0.10

0.05

0.00

0.05

0.10

0.15

filter: 3

0 10 20 30 40 50

0.3

0.2

0.1

0.0

0.1

filter: 4

0 10 20 30 40 50

0.20

0.15

0.10

0.05

0.00

0.05

0.10

0.15
filter: 5

0 10 20 30 40 50

0.15

0.10

0.05

0.00

0.05

0.10

0.15

filter: 6

0 10 20 30 40 50

0.10

0.05

0.00

0.05

0.10

filter: 7

0 10 20 30 40 50

0.15

0.10

0.05

0.00

0.05

0.10

filter: 8

0 10 20 30 40 50

0.15

0.10

0.05

0.00

0.05

0.10

0.15

filter: 9

0 10 20 30 40 50

0.10

0.05

0.00

0.05

0.10

filter: 10

0 10 20 30 40 50

0.15

0.10

0.05

0.00

0.05

0.10
filter: 11

0 10 20 30 40 50

0.15

0.10

0.05

0.00

0.05

0.10

filter: 12

0 10 20 30 40 50

0.15

0.10

0.05

0.00

0.05

0.10

0.15

filter: 13

0 10 20 30 40 50
0.20
0.15
0.10
0.05
0.00
0.05
0.10
0.15
0.20

filter: 14

0 10 20 30 40 50

0.10

0.05

0.00

0.05

0.10

filter: 15

(b) Top/Bottom 5%

Figure 1: Filter position weight matrices from the first convolutional layer using top/bottom 1% and
5% of the filter weights. Blue, green and black represent hydrophilic (RKDENQ) , neutral (SGHTAP)
and hydrophobic (YVMCLFIW) residues, respectively.
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