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Abstract
Rapid and accurate clinical diagnosis of pathological conditions remains highly challenging.

An important part of the development includes building effective classification models. Some
machine learning approaches have been investigated to achieve Mass Spectrometry (MS) data
classification. However, these algorithms require time-consuming preprocessing steps to remove
data artifacts, making their application unsuitable for real-time analysis. Convolutional Neural
Networks (CNNs) have shown to perform well under such circumstances. However, their
effectiveness drastically decreases when a small number of samples is available, which is a
common situation in medicine.

In this study, we investigate first CNNs transfer learning for 1D MS data classification,
then we develop a new cumulative learning method when transfer learning is not powerful
enough. We hence propose to train the same model through several classification tasks over
different small datasets from different biological contexts, thus accumulating MS knowledge in
the resulting representation. Our results show that using the cumulative learning approach
improves classification accuracy beyond 98% for canine cancer, human ovarian cancer, and
pathogenic microorganisms biotypes in 1D clinical datasets. Our proposed approach is a
promising strategy to improve classification accuracy when only a small number of samples is
available as prospective cohorts.

1 Introduction

In many clinical situations, the speed, sensitivity, and reliability of diagnostic may improve
patient uptake. For instance, rapid identification of cancer tissues has a crucial impact on decisions
made during surgery [1]. A similar need exists in the treatment of infections, where accurate and
rapid identification of microorganisms is important to ensure the most appropriate and effective
treatment [2]. Mass spectrometry (MS) is particularly useful for such purposes since it provides
non-targeted molecular information on the millisecond time scales [3, 4]. Its sensitivity and
reproducibility are well established. In this context, SpiderMass is a new MS system designed for
in vivo and real-time analysis. It has several applications including cancer diagnosis [5], bacteria
biotyping [6], and other scale applications [7].

For cancer diagnostics and microbial pathogen identification, many popular classification
machine learning models, such as Support Vector Machine (SVM) [8], Random Forest (RF) [9],
and Linear Discriminant Analysis (LDA) [10] have been already used and compared for MS data
classification [11–14]. However, these methods design for real-time applications becomes a highly
complex task, since they must follow a workflow involving several interdependent preprocessing steps
such as denoising, baseline correction, alignment, etc. To address real-time MS data classification
for a prospective implementation in the SpiderMass, Convolutional Neural Networks (CNNs)
represent an attractive approach offering various advantages [15] even on raw data. However, their
classification efficiency trained using a small number of spectra drops rapidly [16], which is the
case in many clinical situations, where the samples are accessible in limited amounts especially for
rarer diseases. For such applications, transfer learning has emerged as an interesting approach [17].
It has proven useful in many engineering areas [18]. This has yet to be explored for 1D spectral
data, since no 1D spectral dataset as large as the ImageNet database is available for instance
[19]. The aim of this study was to build CNN-based classification models for 1D mass spectra
classification using small clinical datasets generated for diagnosis of cancer or microbial infection.
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2 Methods

2.1 Datasets

We evaluated our proposed approach on independent MS datasets (Table 1):

MS instrument Dataset Classes # spectra Description
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s Synapt G2-S Q-TOF
(Waters, SpiderMass) Canine cancer

Normal
Myxosarcoma
Fibrosarcoma

Hemangiopericytoma
Malignant peripheral nerve tumor

Osteosarcoma
Undifferentiated pleomorphicsarcoma

Rhabdomyosarcoma
Splenic fibrohistiocytic nodules

Histiocytic sarcoma
Soft tissue sarcoma

Gastrointestinal stromal sarcoma
Total

482
60
404
134
60
339
376
66
63
105
69
70

2228

Contained 1 normal and 11 heterogeneous sarcoma types
as described previously [5]

Hybrid quadrupole
(QSTAR pulsar I) Human ovarian cancer 1

Normal
Cancer
Total

95
121
216

Contained two classes of low-resolution spectra, normal and cancerous
publicly available at home.ccr.cancer.gov/ncifdaproteomics/ppatterns.asp

Synapt G2-S Q-TOF
(Waters, SpiderMass) Microorganisms

Staphylococcus aureus
E.coli D31

Pseudomonas aeruginosa
Enterococcus faecalis
Candida albicans

Total

26
26
24
19
23
119

Contained a five human pathogen
as described previously [6]
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s PBSII SELDI-TOF Human ovarian cancer 2
Normal
Cancer
Total

91
162
253

Contained two classes of high-resolution spectra , normal and cancerous
publicly available at home.ccr.cancer.gov/ncifdaproteomics/ppatterns.asp

Rapiflex MALDI-TOF
(Bruker) Rat brain

Gray matter
White matter

Total

4635
5465

10100
Contained spectra of rat gray and white brain matter

Synapt G2-S Q-TOF
(Waters, SpiderMass) Beef liver

Positive mode
Negative mode

Total

1372
1265
2637

Contained two types of spectra of healthy beef liver samples,
one acquired in positive and the other in negative ion mode

Table 1: Description of datasets
2.2 Experiments

All datasets were imported without undergoing any preprocessing step. Each dataset were
linearly scaled between 0 and 1 and divided randomly into training, validation, and test with ratios
of 60%, 20%, and 20%, respectively. Performance of trained classifiers was measured by global
accuracy on test subsets averaged over 10 independent iterations. For each iteration a stratified
5-fold cross validation was used to maintain the original proportion of minority classes. A weighted
loss function was used during the training for samples from under-represented classes.

Protocol for evaluating 2D-CNN architectures adapted to 1D We evaluated and com-
pared the application of three prominent CNN architectures for classifying spectra in clinical
datasets. The first of these was variant_LeNet contained two convolutional layers and two fully
connected layers, adapted from [20], the second was LeNet_Liu included three convolutional layers
and two fully connected layers [16], and the third was VGG9 with six convolutional layers and three
fully connected layers adapted from [18]. We performed a grid search of several hyperparameters
such as number of filters, kernels size, learning rate, etc. Using this approach, we expected to
determine what model depth and hyper-parameters are optimal for classification of MS spectra,
especially in the case of highly heterogeneous biological classes such as canine cancer types.

Protocol for evaluating transfer learning The three CNN architectures were trained on
the large rat brain dataset with all weights initialized according to He normal distribution. The
decision layers of the network were not useful, since the rat brain and clinical datasets were from
different contexts. The convolutional weights were then frozen so that they would not be updated
during back-propagation, the decision layers were removed, and the new specific decision layers
dedicated to smaller clinical datasets were trained. Transfer learning from the rat brain dataset
allowed the model to learn and detect generic representations of MS peaks. By freezing the lower
CNN levels, we are assuming that the model has extracted the right patterns, and that only the
high level is needed to take into account specific peak’s features.

Protocol for evaluating cumulative learning Transfer learning in some cases may not be
enough as an aid to classifying biologically similar materials using CNN models. This proximity is
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reflected in a high degree of confusion between classes. This is typically the case when the biggest
dataset which is supposed to be used to learn the pivotal data representation is not big enough.
In addition, low-resolution or data heterogeneity can further complicate the classification task. We
therefore propose two approaches to developing 1D CNN cumulative learning:

Scenario A The first step is to train CNN architectures on the rat brain dataset as described
before for transfer learning. The model weights are then fine-tuned, the decision layers are removed,
and new decision layers are trained with :

- the beef liver dataset, then its weights were frozen and new specific decision layers were added
and trained using the canine cancer dataset.

- the human ovarian 2 dataset, then its weights were frozen and new specific decision layers
were added and trained using the human ovarian 1 dataset.

Scenario B CNN architectures were trained on the rat brain and fine-tuned with the beef
liver dataset as described in Scenario A, but instead of testing this model on the canine cancer
dataset, an additional learning was added. Beef liver CNN weights were fine-tuned, decision layers
were removed and new specific decision layers were added and trained using the microorganisms
dataset, before freezing convolutional layer weighting and training new specific decision layers on
the canine cancer dataset.

The resulting CNN model from Scenario B was tested with changes to the dimensionality of
the output space (number of classes) and the activation function of the last fully connected layer
on rat brain, beef liver and microorganisms datasets separately. The objective was to assess how
much learning skill the final CNN gained or lost of MS knowledge through successive training.

Standard Machine learning classification algorithms Conventional algorithms, namely
SVM, RF, and LDA are not designed to classify MS spectra that have not been preprocessed.
Spectra were corrected using sequential preprocessing of five steps: (1) Savitzky-Golay-Filter
denoising, (2) baseline subtraction using the statistics-sensitive non-linear iterative peak-clipping,
(3) normalization on the total ion count, (4) alignment using a cubic warping function, (5) and
peaks detection using the median absolute deviation. Chi-square (χ2) statistic was used to reduce
data dimensionality before feeding to the classification algorithms.

3 Results

3.1 CNNs classification performance
Dataset # classes variant_LeNet LeNet_Liu VGG9

Canine cancer 12 0.66 ± 0.02 0.68 ± 0.08 0.72 ± 0.02

Ovarian cancer 1 2 0.74 ± 0.01 0.80 ± 0.00 0.53 ± 0.01

Microorganisms 5 0.75 ± 0.02 0.73 ± 0.09 0.31 ± 0.06

Table 2: Overall classification accuracies
using three CNN architectures. The best
result is indicated in boldface

As shown in Table 2, VGG9 was the best at canine
cancer classification, while LeNet_Liu was the best at
classifying ovarian dataset. Variant_LeNet was the
best at classifying microorganisms, but accuracy suf-
fers quickly from over-fitting when a deep architecture
such as VGG9 was used. All three CNN architectures
performed poorly, which was not surprising because of the low number of spectra used for the
training.

3.2 Transfer learning
Dataset # classes variant_LeNet LeNet_Liu VGG9

Canine cancer 12 0.81 ± 0.00
22%

0.88 ± 0.03
29%

0.87 ± 0.01
20%

Ovarian cancer 1 2 0.80 ± 0.01
8%

0.83 ± 0.02
3%

0.81 ± 0.02
52%

Microorganisms 5 0.99 ± 0.00
30%

0.99 ± 0.00
35%

0.81 ± 0.02
158%

Table 3: Overall classification accuracies us-
ing three CNN architectures with transfer
learning. The improvement in performance
is expressed as a percentage

As shown in Table 3, transfer learning clearly im-
proved the classification accuracy of the three small
datasets compared to models trained from scratch.
These results suggest that training a CNN model with
extracted spectral features transferred even from an
unrelated field is better than training it with spectral
features learned from scratch on a small dataset. Al-
though improvements are still needed for canine and
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ovarian cancer datasets.

3.3 Cumulative learning

Two scenarios were tested: (A) training on intermediate beef liver and then on canine cancer
dataset or training on intermediate human ovarian 2 and then on human ovarian 1 cancer dataset;
(B) training on beef liver, then on microorganisms and lastly on canine cancer dataset.

Dataset Protocol variant_LeNet LeNet_Liu VGG9

Canine cancer

Scenario A
0.86 ± 0.02

30%∗

6%∗∗

0.95 ± 0.033
39%∗

8%∗∗

0.93 ± 0.02
27%∗

6%∗∗

Scenario B

0.90 ± 0.01
37%∗

12%∗∗

5%∗∗∗

0.97 ± 0.00
41%∗

10%∗∗

2%∗∗∗

0.98 ± 0.00
35%∗

12%∗∗

6%∗∗∗

Ovarian cancer 1 Scenario A
0.95 ± 0.00

28%∗

18%∗∗

0.99 ± 0.00
24%∗

19%∗∗

0.96 ± 0.01
81%∗

18%∗∗

Table 4: Overall classification accuracies by
the three CNN architectures; percent im-
provement to learning from scratch∗, trans-
fer learning∗∗, and Scenario A∗∗∗

As shown in Table 4, Scenario A improved the
classification accuracy considerably for canine cancer
relative to learning from scratch and slightly relative to
transfer learning, the best improvements was obtained
with LeNet_Liu architecture. Scenario B provided a
slight additional improvement over Scenario A, and
the greatest accuracy was achieved with VGG9 archi-
tecture. For the human ovarian 1 dataset, accuracy
was improved to 0.99 by scenario A with LeNet_Liu
architecture.

These results show that in contrast with the pre-
viously observed lack of sensitivity and specificity of
low-resolution datasets for cancer diagnosis [21], the CNN cumulative model was up to the task
without any need for spectral preprocessing steps.

Classification accuracy obtained by CNN from scratch on data used for the training (rat brain
and beef liver) and with transfer learning for microorganisms (Table 3) was equal to 0.99. Testing
the best resulting cumulative representation of VGG9 from Scenario B on rat brain, beef liver and
microorganisms datasets separately did not show improvement of the classification accuracy from
0.99. This indicates that the model accumulates knowledge through the successive training phases
without any losses and suggests that a "universal" representation of MS classification might exist.

3.4 Performance of standard algorithms applied to preprocessed datasets

Dataset # classes SVM RF LDA

Canine cancer 12 0.53 ± 0.22 0.75 ± 0.21 0.723 ± 0.025

Ovarian cancer 1 2 0.60 ± 0.05 0.88 ± 0.03 0.97 ± 0.00

Microorganisms 5 0.88 ± 0.00 0.98 ± 0.01 0.65 ± 0.03

Table 5: Overall classification accuracies
by SVM, RF, and LDA

As shown in Table 5, RF outperformed the other
methods in canine cancer and microorganisms classi-
fication, while LDA was best for ovarian classification.
Performance of RF and LDA appears not comparable
to that of CNNs. In addition, RF and LDA require
more time to carry out the necessary preprocessing
steps and to determine the optimal hyper-parameters
since datasets had different artifacts and therefore required different preprocessing strategies.

4 Discussion

This study shows for the first time the use of cumulative learning for 1D spectrum classification
of datasets generated in vastly different biological contexts, on different organisms, acquired by a
variety of instruments and technologies at different resolutions. Our CNN model was designed
by accumulating mass spectral knowledge through multiple training steps on small datasets. It
provided a viable alternative when transfer learning was inadequate, as was the case for low-
resolution, heterogeneous MS data, or when the source domain dataset was not large enough. The
novelty is that the model can be pre-trained on a dataset containing only two output categories
and yet predict 2, 5 and even 12 outputs, that are unlikely to share common features. The
final model accumulates MS knowledge through the successive training phases without any losses
which suggests that a "universal" representation of MS classification might exist. In addition,
CNNs appear to offer a unified solution for classification without the need for time-consuming
preprocessing of spectra making the model adapted for a real-time analysis.
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