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Abstract

Single-cell RNA sequencing technologies are widely used in recent years as a pow-
erful tool allowing the observation of gene expression at the resolution of single
cells. Two of the major challenges in scRNA-seq data analysis are dropout events
and batch effects. The inflation of zero(dropout rate) varies substantially across sin-
gle cells. Evidence has shown that technical noise, including batch effects, explains
a notable proportion of this cell-to-cell variation. To capture biological variation,
it is necessary to quantify and remove technical variation. Here, we introduce
SCRIBE (Single-Cell Recovery Imputation with Batch Effects), a principled frame-
work that imputes dropout events and corrects batch effects simultaneously. We
demonstrate, through real examples, that SCRIBE outperforms existing scRNA-seq
data analysis tools in recovering cell-specific gene expression patterns, removing
batch effects and retaining biological variation across cells. Our software is freely
available online at https://github.com/YiliangTracyZhang/SCRIBE.

1 Introduction

Though undergoing rapid development in recent years, single-cell RNA-sequencing (scRNA-seq)
data analysis is challenging due to severe systematic errors including batch effects and dropout
events[1]. Batch effects may result from laboratory conditions, reagent lots and personnel differences,
etc[2]. Combining data from multiple batches can offset the restriction of sample size and increase
statistical power. However, the existence of batch effects makes data integration difficult since they
are often associated with an outcome of interest[3]. Since the earliest observation of batch effects in
microarray experiments[4], an explosion of batch effects correction methods for both bulk RNA-seq
data[5–13] and scRNA-seq data[14–20] have been developed over the past two decades. Moreover,
the inflation of zero caused by dropout events[21] renders more noise to scRNA-seq data than bulk
RNA-seq data. Evidence has shown that batch effects account for a substantial percentage of dropout
variability at the cell level[1]. Many imputation methods have been proposed in recent years to
recover dropouts[18, 20, 22–25] in scRNA-seq data. However, among these methods, few take both
batch effects and dropout events into consideration.

In this paper, we propose SCRIBE(Single-Cell Recovery Imputation with Batch Effects), a unified
framework that jointly corrects batch effects and imputes dropout events across multiple biological
groups. We apply SCRIBE to a single mouse neurons dataset to show that SCRIBE can accurately
recover and correct batch effects for scRNA-seq data.
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2 Method

2.1 SCRIBE model

We outline the framework of SCRIBE in this section. Let Ycg denote the observed read count of gene
g cell c and Zcg be the dropout indicator. To account for dropout events and batch effects, we model
Ycg by a hierarchical zero-inflated Poisson mixed model[26, 27]:

Ycg = 0

∣∣∣∣Zcg = 0, Ycg ∼ Poisson (λcg)

∣∣∣∣Zcg = 1,

where log (λcg) = log
(
µG(c)g

)
+log (rc)+log (lg)+big . µG(c)g is the “true” normalized expression

level for gene g of biological group G(c); rc is the library size of cell c; lg is the total read count of
gene g and big is the random effect of batch i on gene g. We assume big ∼ N

(
νi, σ

2
i

)
with a constraint∑

i νi = 0 to ensure the identifiability of the parameters. Zcg follows Bernoulli distribution with
P (Zcg = 1) = Φ [γi + αi log (rc) + βi log (lg)]. γi, αi and βi are batch specific dropout parameters
of batch i to which cell c belongs. Φ (·) is the CDF of standard normal distribution.

2.2 SCRIBE estimation procedure

The estimation of parameters in SCRIBE model follows maximum likelihood estimation(MLE). We
apply Monte-Carlo EM(MCEM) algorithm[28, 29] here. Define πcg = γi + αi log (rc) + βi log (lg).
In order to apply data augmentation algorithm[30], we introduce a latent variable ηcg ∼ N(πcg, 1)
that satisfies Zcg = 1{ηcg>0}. In MCEM, the random effect big and the data augmentation variables
ηcg are treated as missing data. In E step, with the help of Metropolis–Hastings algorithm[31, 32], we
sample big and ηcg for K times from the posterior distribution conditioning on the preceding M step
estimation of other parameters. We denote the posterior samples as bigk, ηcgk and Zcgk = 1{ηcgk>0},
where k = {1, 2, . . . ,K}. Then, in M step, the estimation of other parameters can be separated
into three independent parts: (i) Estimation of µG(c)g. Directly using MLE estimator, we have
µ̂Gg =

(
K
∑
c∈G Ycg

) / (
lg
∑
c∈G rc (

∑
k exp (bigkZcgk))

)
; (ii) Estimation of γi, αi and βi. We

fit a batch-specific linear model that regresses ηcgk on log (rc) and log (lg) to get the estimation γ̂i,
α̂i and β̂i; (iii) Estimation of νi and σ2

i . Restricted maximum likelihood(REML) is applied on bigk to
estimate ν̂i and σ̂i with the constraint

∑
i νi = 0.

2.3 Dropout recovery imputation and batch effects correction

SCRIBE conducts data normalization, dropout imputation and batch effects correction simultaneously.
Given the fitted model, define Λ̂cg = µ̂G(c)glg and let p̂cg be the estimation of posterior probability,
i.e. pcg = P

(
Zcg = 1

∣∣Ycg). To be specific, p̂cg = 1, if Ycg > 0. Otherwise, by Bayes’ theorem:

p̂cg = Φ̂ (π̂cg) exp
(
−λ̂cg

)/(
1 + Φ̂ (π̂cg)

(
exp

(
−λ̂cg

)
− 1
))

,

where π̂cg and λ̂cg are the estimation of πcg and λcg from the last iteration of MCEM, respectively.
We develop a location and scale (L/S) adjustment[8] that retains the first and second moments of
Poisson distribution. For Ycg > 0, the corrected data Ỹcg is given by

Ỹcg =

[(
Ycg − λ̂cg +

√
λ̂cgΛ̂cg

)
∨ 0

]/√
λ̂cg
/

Λ̂cg.

For Ycg = 0, Ỹcg is the sum of corrected expression level and dropout imputation weighted by their
posterior probability:

Ỹcg =

[(√
λ̂cgΛ̂cg − λ̂cg

)
∨ 0

]
· p̂cg

/√
λ̂cg
/

Λ̂cg + φcg · (1− p̂cg) ,

where φcg
ind∼ Poisson

(
Λ̂cg

)
.
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3 Results

We use Usoskin’s single mouse neurons dataset[33] to examine the performance of SCRIBE on
imputing the zeros, correcting batch effects and whether the imputation and batch effects correction
would outperform existing analysis tools. The cell labels are assigned by the authors. We choose 4 cell
types(peptidergic nociceptors, non-peptidergic nociceptors, neurofilament containing and tyrosine
hydroxylase containing) with enough sample sizes from two batches. Genes with no expression are
discarded. The filtered dataset contains 19,212 genes and 420 cells(265 cells in batch1 and 155 cells
in batch2).

3.1 Comparison with existing dropout imputation methods

In this section, we benchmark SCRIBE with existing imputation methods including BUSseq[18],
Drimpute[24], scImpute[22], SAVER[25] and MAGIC[23]. To generate realistic benchmarking
datasets, we perform down-sampling experiments[25] on Usoskin dataset. We first select genes that
have non-zero expression in at least 45% of the cells and cells with a library size of greater than 20,000
as the reference dataset, which we treat as the “true expression”(data without dropouts). We end up
with 3,156 genes and 244 cells(90 cells in batch1 and 154 cells in batch2) with overall detection rate
80.45%. Then, we randomly drop data in the reference dataset and generate an “observed dataset”.
The probability of dropout is 0.8 for batch1 and 0.7 for batch2. In our simulation, we assume batch
specific coefficients of library size rc and total read count lg , αi and βi are equal to zero for i = 1, 2.
The overall detection rate is 21.15% after artificial dropout events which is close to 20.33%, the
overall detection rate of Usoskin dataset.
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Figure 1: Comparisons of imputation methods on down-sampled single mouse neurons dataset.
(a) Performance of methods measured by gene level correlation with reference. (b) Performance of
methods measured by cell level correlation with reference. (c) Correlation matrix distance (CMD)
between gene-to-gene correlation matrices recovered by benchmarking methods as well as observed
data and the reference gene-to-gene correlation matrix. (d) Correlation matrix distance (CMD)
between cell-to-cell correlation matrices recovered by benchmarking methods as well as observed
data and the reference cell-to-cell correlation matrix.

All parameters are set to default for all the benchmarking imputation methods. To evaluate the
performance of each method, we calculate the gene-wise Pearson correlation across cells and the
cell-wise Pearson correlation across genes between the library-size normalized reference dataset
and observed dataset, as well as between the normalized reference dataset and normalized observed
dataset(Fig. 1a, b). The results show that SCRIBE outperforms other methods on both the gene-wise
and cell-wise correlations although SAVER performs comparably to SCRIBE in terms of cell-wise
correlations. Then, we calculate correlation matrix distance (CMD)[34] between gene-to-gene and
cell-to-cell correlation matrices recovered by benchmarking methods as well as observed data and
the reference gene-to-gene and cell-to-cell correlation matrix. CMD is a measure of the distance
between two correlation matrices ranging from 0 (equal) to 1 (maximum difference). For gene-to-gene
CMD(Fig. 1c), SCRIBE performs comparably to SAVER while it outperforms all other methods. For
cell-to-cell CMD(Fig. 1d), SCRIBE significantly improves the performance.

3.2 Comparison with existing batch effects correction methods

Next, we benchmark SCRIBE with existing scRNA-seq batch effects correction meth-
ods including BUSseq[18], MNN[15], Seurat[14] and ZINB-WaVE[16]. The number
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Figure 2: Comparisons of batch effects correction methods by Uniform Manifold Approxima-
tion and Projection(UMAP). (a) Uncorrected data colored by batch. (b) SCRIBE results colored
by batch. (c) BUSseq results colored by batch. (c) MNN results colored by batch. (d) Seurat results
colored by batch. (e) Seurat results colored by batch. (f) ZINB-WaVE results colored by batch. (g)
Uncorrected data colored by cell types. (h) SCRIBE results colored by cell types. (i) BUSseq results
colored by cell types. (j) MNN results colored by cell types. (k) Seurat results colored by cell types.
(l) ZINB-WaVE results colored by cell types.

of cell types is input to BUSseq with all other parameters set to default. The
number of nearest neighbors k is set to 20 for MNN. All parameters in Seurat
are set to default. The parameter of dimension K in ZINB-WaVE is set to 10.
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Figure 3: Silhouette width calculated on either batch informa-
tion or known sample group for benchmarking methods on
batch effects correction.

With the ground truth reported
by the original publication, we
use the Adjusted Rand Index
(ARI) which measures the con-
sistency between two clustering
results as the performance met-
ric. Higher ARI suggests bet-
ter performance on batch effects
correction. We implement k-
means for cell types clustering
on the results of each method
except for BUSseq, which has
its own inferred cell types. Our
results of ARI are 0.930 for
SCRIBE, 0.829 for BUSseq,
0.701 for MNN, 0.670 for Seu-
rat and 0.904 for ZINB-WaVE.
Uniform Manifold Approxima-
tion and Projection(UMAP)[35] plots show that SCRIBE outperforms all other methods in that
SCRIBE can cluster the cells by cell types(Fig. 2). We also calculate the silhouette width[36] to
compare the clustering performance of the different methods to remove batch effects and combine
data. A high value of silhouette width indicates that the cell is well matched to its own cluster and
poorly matched to neighboring clusters. Here, silhouette widths are calculated based on UMAP
for either batch information or known sample group. Our results show that batch information after
corrected by SCRIBE merges together and SCRIBE gives more concentration on high silhouette
scores on cell types than other methods(Fig. 3).

4 Conclusion

Although our understanding of scRNA-seq data is still far from complete, we have gained valuable
knowledge from the technique. To make full use of this tool and capture biological insights behind
the data, we propose a new statistical framework based on zero-inflated Poisson mixed model for
scRNA-seq data analysis. Real data results show that SCRIBE is a powerful method that jointly
adjusts for batch effects and imputes dropout events. For dropout imputation, SCRIBE borrows
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information from same cell types across other batches to recover the true expression level; For batch
effects correction, random effect model in SCRIBE provides more robust adjustment for the batch
effects on each gene as well as retaining biological variation.

Future work. Directly following the current model, we can use the parameters and posterior
distributions estimated by SCRIBE to develop a statistical inference procedure to test differential
expression of markers across biological groups. New markers or cell types might be identified with
this statistical testing procedure which will constitute the object of future studies.
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