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Abstract 

The diverse applications of deep learning in computational biology include single-cell microscopy image 
analysis and prediction of transcription factor binding from DNA sequence. Although it is clear that 
CNNs and their derivatives will revolutionize these fields, it is not yet clear to what extent deep models 
will be transferred, reused or retrained for each application. For single cell identification/segmentation in 
microscope images, one study found remarkable generalization capacity of a mask-RCNN: with no 
parameter tuning, performance across microscopy datasets is competitive with conventional methods that 
have been highly tuned for each dataset. This type of generalization implies that a single model can be 
deployed over the web for all users. On the other hand, for protein subcellular localization classification 
in images, there is evidence for sensitivity to ‘batch’ or ‘out-of-sample’ effects, such that performance 
degrades on test sets taken at different times and on different instruments. We discuss similar issues in 
deep learning methods applied to transcription factor binding. We conclude that the issue of when models 
can generalize and when they must be retrained is largely unexplored, but will be critical in shaping how 
deep learning is applied to computational biology. 

Introduction 

Given the encouraging results of deep learning applications in many areas of computational biology[1], 
the widespread adoption of these techniques into mainstream bioinformatics methods seems likely. 
However, it is currently unclear what the future deep computational biology will look like. Recent 
perspectives emphasize the importance of model complexity and “big data” [2], [3]. These models require 
extensive compute resources and expertise to train. Current practice in the IT industry is that only a few 
large players design and train the state-of-the-art models, and then these are deployed by others in 
applications through programmatic interfaces[4], [5]. Smaller, niche-specific problems are solved by 
either transferring directly or “fine-tuning” based on pre-trained model designs and parameters. There are 
conflicting reports about the efficacy of these strategies, exemplified by results from classification of 
natural images: on the one hand, models trained on large datasets have shown remarkable generalizability 
to other problems in image analysis, such that direct use of pre-trained models (so-called “transfer 
learning”) on new problems is a key baseline for any new method[6]. On the other hand, recent research 
suggests that at a quantitative level, classification results obtained are not generalizable to even to new 
datasets that have been constructed to be similar to the originals[7]. Given the well-appreciated batch 
effects and other biases in large biological datasets[8], it is likely that similar issues will arise in 
computational biology applications as well: deep, non-linear encoders have unprecedented power to 
capture subtle biological signals, but may also have unprecedented sensitivity to subtle data distribution 
non-stationarity, batch effects, imbalance, etc. Indeed “batch” effects were given as motivation for the 
release of a new collection of microscopy images[9] and associated competition[10].  

It is currently unclear how to design deep learning methods for biological data so that they can generalize 
to data from new experiments that were not available during the training process. Key questions 
surrounding design decisions that may affect generalizability include: training data size and diversity, 
architecture depth and complexity, supervised vs. unsupervised training, data augmentation procedures 



and losses. Here we review some recent findings that relate to generalizability vs. sensitivity to out-of-
sample effects. We first focus on analysis methods for high-throughput microscopy image datasets, where 
convolutional neural networks have easily achieved state-of-the-art performance[1]. We then discuss 
possible generalization issues for deep learning approaches to functional genomics data, and finally a 
recent attempt to use deep language models to predict protein structure.  

Conflicting results from single cell image analysis: remarkable generalizability for cell segmentation, 
but not for classification  

Two key problems in single cell microscopy image analysis are cell segmentation and classification. The 
first task is simply to identify the cells or nucleii (often based on a nuclear or cell periphery stain or 
marker). Like many classical problems in image analysis, when the number of cells is larger than a 
handful and not known a priori, and when cells may be clumped together, dividing or touching, solutions 
are sensitive to changes in signal-to-noise, lighting, magnification, etc. As expected, UNets[11] easily 
achieved state-of-the-art performance on nucleus identification in fluorescence images [12] but the 
authors noted large performance drops when testing on new datasets that were collected by different labs 
with different instruments [12]. These results indicated that generalization appears to be a significant 
challenge for deep learning methods.  

On the other hand, at least two highly general methods have been reported. Cell segmentation was the 
subject of a 2018 Kaggle competition[13], and the top-ranking approaches trained mask-RCNNs, an 
advanced CNN-based model (developed to segment objects in natural images[14]), on a diverse collection 
of microscope images of mostly mammalian cells with segmented nucleii. Remarkably, (at least) one of 
these models had unexpected generalization capacity to identify yeast cells: with no parameter tuning at 
all, it outperformed conventional segmentation methods (based on 2D-HMMs and watershed 
refinement[15]) that had been developed and trained specifically for high-throughput yeast fluorescence 
microscopy image collections (Table 1). In addition, the mask-RCNN (which was named 
YeastSpotter[16]) obtained competitive accuracy on several benchmark datasets with tools for 
segmenting yeast cells in brightfield images, all of which had to be tuned to obtain good results for each 
dataset[17]. Unpublished results[18] suggest that similar generalization capacity may be possible for 
human cells, such that a single method can identify cells in any type of images (although this method has 
not yet been evaluated on out-of-sample datasets.) These methods have been made available as webtools, 
offering the first truly general microscope image segmentation to biologists: users simply upload images 
and obtain results. 

Although it is not currently clear whether the more sophisticated architectures (mask-RCNNs vs. Unet) or 
differences in the training data diversity or augmentation are responsible for the observed differences in 
generalization capacity, these recent results suggest that, at least in principle, deep-learning methods can 
provide unprecedented generality in single cell identification in microscope images.  

Table 1. Of-the-shelf transfer learning for a mask-RCNN on fluorescent yeast micrographs (from[16]) 

Method Ellipses 
Matched 

Mean Standard 
Deviation 

Correlation Run Time  

YeastSpotter  97.5% 1.58 0.99 0.969 1172 
Engineered 92.3% 1.41 1.21 0.928 13851 
CellProfiler 89.0% 2.23 1.80 0.876 231 

Percent of manual ellipses with a matched single-cell segmentation within 10 pixels, the mean and 
standard deviation of distance (in pixels) between the centers of the manual ellipse and segmentation, the 
correlation between their areas, and the time (in seconds) to process the evaluation image set (68 images). 
YeastSpotter is a mask-RCNN trained to identify nuclei used “off-the-shelf” on yeast images that do not 



resemble any images in its training set. Engineered is a method designed for this dataset[15] and 
CellProfiler[19] is a field standard general microscope image analysis package. 

CNN-based methods have also easily achieved state-of-the-art performance in single cell classification[1], 
another widely studied problem in microscopy image analysis. In this problem, batch-effects are well-
known. In one of the first applications of deep learning to single cell image data, an 11-layer CNN 
(DeepLoc) was trained to classify yeast cells into subcellular localization classes[20]. While some transfer 
capacity to a different dataset was reported, retraining using labelled data for each class was required for 
reasonable performance. In human cell phenotype classification, authors reported significant challenges 
due to batch effects in generalizing their classification results, even within the same dataset[21]. A recent 
study designed to directly test generalization of classifiers used a large, diverse dataset of mouse cells 
from 7 localization classes (COOS-7 [22]). In this dataset, out-of-sample (different days, microscopes, 
etc.) and within-sample (random subset) test image datasets of the same cells were compared directly to 
test generalization capacity. While, overall, CNN-based methods show the highest classification 
accuracies, they still suffer performance degradation when the test set is from a different sample than the 
training data (Table 2). We emphasize that this is not due to simple “overfitting” because even the within-
sample test set is unseen during training. Thus, unlike for single cell segmentation, in single cell 
classification, highly generalizable models have not yet been obtained. 

Table 2. Class-Balanced Error (%) of classification models on out-of-sample tests (from[22]) 

Method Train Test1 Test2  Test3  Test4  
Supervised (DeepLoc) 1.2 1.2 1.5 7.4 5.4 

Transfer (VGG16) 2.8 3.9 3.9 8.0 6.8 
Self-Supervised (PCI) 1.0 1.4 1.7 9.2 7.4 

Texture features 6.4 6.8 6.5 12.0 12.1 
Comparison of best performing classifiers on COOS-7. ‘Train’ is a diverse training set of >41k images, 
‘Test1’ is a within-sample randomly held out set of 10k images, and Test2, Test3 and Test4 are sets of 
>15k images each from other imaging wells, days and miscroscope. DeepLoc is an end-to-end 11-layer 
supervised CNN-based classifier[20]. Transfer learning following [23] using a L1-logistic regression 
classifier on the second layer of the 4th convolutional block of VGG16 features. For self-supervised, the 
features from the 3rd convolutional layer of a CNN trained using Paired-Cell-Inpainting (PCI,[24]) were 
used in an L1-logistic regression classifier. Texture features are classical rotation-invariant features used 
for microscopy image analysis used as input to an L1-logistic regression classifier. In each case, the 
models were trained only on the training data set, and for the unsupervised methods, L1 logistic 
regression was the best performing classification strategy. 

Generalization may be a challenge for deep-learning models for transcription factor binding 

One area where deep models have achieved state-of-the-art performance in genomics is the prediction of 
protein-DNA binding based on in vivo and in vitro binding data [25]. Architectures have been 
comprehensively tested, and performance on held out data from a different assay was reported[25]. 
Although the two assays are not directly comparable (there may be bona fide biological differences in 
binding), and only three datasets were compared, the results are consistent with substantial performance 
decreases when test data are derived from other experiments (Table 3). 

Table 3. Average AUC over 3 transcription factor binding prediction models (from[25]) 

Method Same assay  Different assay  
DeepBind 93.5 88.7 

ECBLSTM 95.9 91.3 



DeepBind[26] was among the first neural network methods for prediction of binding and ECBLSTM is a 
top-performing method based on an advanced language-model from a recent systematic comparison. 
‘Same assay’ is the results of training and testing models on ChIP-seq data, while ‘Different assay’ trains 
models on SELEX data and tests them on ChIP-seq data. 

A closely related problem is prediction of cell-type specific transcription factor binding. The ENCODE-
DREAM challenge asked participants to predict transcription factor binding in diverse cell types using 
genome sequence, DNAase-seq and RNA-seq[27]. Among the best performing methods in the ENCODE-
DREAM challenge were discriminative approaches related to regression or ensemble discriminative 
classification approaches[28]. These results are surprising because the subtle syntax of enhancers (e.g., 
[29]) should give deep, non-linear encoders a clear advantage over conventional approaches. As described 
above, CNN-based methods have shown state-of-the-art performance in closely related problems for 
similar datasets, although they were often evaluated in their ability to discriminate bound sequences from 
randomized sequences [25], thus balancing the classification problem and improving the signal to noise 
relative to genomic sequences. Taken together, although the question of generalization has not been 
explored directly, these reports suggest that generalization to new, diverse genomic datasets may be a 
challenge for deep learning methods in functional genomics. 

Discussion and outlook 

Large-scale biological data contain experimental and biological nuisance variation that, when inconsistent 
across experiments, impacts generalization performance. These so-called covariate shifts, out-of-sample 
or batch effects have been addressed to some extent in classical statistical approaches [8]. Unlike 
conventional statistical or model-based machine learning approaches, however, optimizing the 
hyperparameters of supervised deep learning models requires extensive data and computational resources.  

Here we have focused on some initial results relating to these issues in deep-learning applications in 
microscopy image analysis and transcription factor binding prediction. Even less is known in other 
applications of deep learning in computational biology. However, a recent study reported end-to-end 
protein structure prediction based on amino acid sequences[30]. This study included evaluations on 
predictions of several CASP competitions, but trained hyperparameters on only one. This leaves the 
results of the other competitions as tests of generalization. Interestingly, this study suggests lower 
performance on the other competitions, where hyperparameters were not optimized[30]. Once again, we 
emphasize that this is not overfitting: the test data are always withheld from the model at training time. 
This report highlights the difficulty of the issue: although the forward pass through the trained deep 
learning method is millions of times faster than the conventional competitors, the hyperparameters of the 
model were not optimally tuned for each dataset due to computational resource constraints[30]. The 
difficulty in optimizing supervised deep learning models suggests that out-of-sample generalization 
should ideally be incorporated in model design. Unfortunately, seemingly related machine-learning 
research on meta-learning and domain adaptation has not yet revealed clear direction about which design 
decisions affect generalizability. 

In at least one case, a highly generalizable single cell identification model has been reported[16], 
suggesting that one-model-fits-all is an attainable goal for some classic problems in computational 
biology. The extent to which this will be possible for other problems is an open question. Ultimately the 
generalization capacity of models may shape whether computational biology converges to a small number 
of big, universal models, or a large number of small models, each trained for new datasets. 

References 

[1] C. Angermueller, T. Pärnamaa, L. Parts, and O. Stegle, “Deep learning for computational biology,” 
Mol. Syst. Biol., vol. 12, no. 7, Jul. 2016, doi: 10.15252/msb.20156651. 



[2] “Deep learning in bioinformatics: Introduction, application, and perspective in the big data era,” 
Methods, vol. 166, pp. 4–21, Aug. 2019, doi: 10.1016/j.ymeth.2019.04.008. 

[3] T. Ching et al., “Opportunities and obstacles for deep learning in biology and medicine,” J. R. Soc. 
Interface, vol. 15, no. 141, 2018, doi: 10.1098/rsif.2017.0387. 

[4] “Face API - Facial Recognition Software | Microsoft Azure.” [Online]. Available: 
https://azure.microsoft.com/en-ca/services/cognitive-services/face/. [Accessed: 04-Oct-2019]. 

[5] “Dialogflow API | Dialogflow,” Google Cloud. [Online]. Available: 
https://cloud.google.com/dialogflow/docs/reference/rest/v2-overview. [Accessed: 04-Oct-2019]. 

[6] A. S. Razavian, H. Azizpour, J. Sullivan, and S. Carlsson, “CNN Features Off-the-Shelf: An 
Astounding Baseline for Recognition,” in Proceedings of the 2014 IEEE Conference on Computer 
Vision and Pattern Recognition Workshops, Washington, DC, USA, 2014, pp. 512–519, doi: 
10.1109/CVPRW.2014.131. 

[7] B. Recht, R. Roelofs, L. Schmidt, and V. Shankar, “Do ImageNet Classifiers Generalize to 
ImageNet?,” in International Conference on Machine Learning, 2019, pp. 5389–5400. 

[8] J. T. Leek et al., “Tackling the widespread and critical impact of batch effects in high-throughput 
data,” Nat. Rev. Genet., vol. 11, no. 10, Oct. 2010, doi: 10.1038/nrg2825. 

[9] “RXRX.” [Online]. Available: https://www.rxrx.ai/. [Accessed: 30-Dec-2019]. 
[10] “Recursion Cellular Image Classification.” [Online]. Available: https://kaggle.com/c/recursion-

cellular-image-classification. [Accessed: 30-Dec-2019]. 
[11] O. Ronneberger, P. Fischer, and T. Brox, “U-Net: Convolutional Networks for Biomedical Image 

Segmentation,” May 2015. 
[12] J. C. Caicedo et al., “Evaluation of Deep Learning Strategies for Nucleus Segmentation in 

Fluorescence Images,” bioRxiv, p. 335216, Feb. 2019, doi: 10.1101/335216. 
[13] “2018 Data Science Bowl.” [Online]. Available: https://kaggle.com/c/data-science-bowl-2018. 

[Accessed: 04-Oct-2019]. 
[14] K. He, G. Gkioxari, P. Dollár, and R. Girshick, “Mask R-CNN,” Mar. 2017. 
[15] L.-F. Handfield, Y. T. Chong, J. Simmons, B. J. Andrews, and A. M. Moses, “Unsupervised 

clustering of subcellular protein expression patterns in high-throughput microscopy images reveals 
protein complexes and functional relationships between proteins,” PLoS Comput. Biol., vol. 9, no. 6, 
p. e1003085, 2013, doi: 10.1371/journal.pcbi.1003085. 

[16] A. X. Lu, T. Zarin, I. S. Hsu, and A. M. Moses, “YeastSpotter: Accurate and parameter-free web 
segmentation for microscopy images of yeast cells,” Bioinforma. Oxf. Engl., May 2019, doi: 
10.1093/bioinformatics/btz402. 

[17] C. Versari et al., “Long-term tracking of budding yeast cells in brightfield microscopy: CellStar and 
the Evaluation Platform,” J. R. Soc. Interface, vol. 14, no. 127, p. 20160705, Feb. 2017, doi: 
10.1098/rsif.2016.0705. 

[18] R. Hollandi et al., “A deep learning framework for nucleus segmentation using image style 
transfer,” bioRxiv, p. 580605, Mar. 2019, doi: 10.1101/580605. 

[19] L. Kamentsky et al., “Improved structure, function and compatibility for CellProfiler: modular high-
throughput image analysis software,” Bioinforma. Oxf. Engl., vol. 27, no. 8, pp. 1179–1180, Apr. 
2011, doi: 10.1093/bioinformatics/btr095. 

[20] O. Z. Kraus et al., “Automated analysis of high-content microscopy data with deep learning,” Mol. 
Syst. Biol., vol. 13, no. 4, p. 924, Apr. 2017, doi: 10.15252/msb.20177551. 

[21] D. M. Ando, C. Y. McLean, and M. Berndl, “Improving Phenotypic Measurements in High-Content 
Imaging Screens,” bioRxiv, p. 161422, Jul. 2017, doi: 10.1101/161422. 

[22] A. X. Lu, A. X. Lu, W. Schormann, D. W. Andrews, and A. M. Moses, “The Cells Out of Sample 
(COOS) dataset and benchmarks for measuring out-of-sample generalization of image classifiers,” 
arXiv.org, Jun. 2019. 

[23] N. Pawlowski, J. C. Caicedo, S. Singh, A. E. Carpenter, and A. Storkey, “Automating 
Morphological Profiling with Generic Deep Convolutional Networks,” bioRxiv, p. 085118, Nov. 
2016, doi: 10.1101/085118. 



[24] A. X. Lu, O. Z. Kraus, S. Cooper, and A. M. Moses, “Learning unsupervised feature representations 
for single cell microscopy images with paired cell inpainting,” PLoS Comput. Biol., vol. 15, no. 9, p. 
e1007348, Sep. 2019, doi: 10.1371/journal.pcbi.1007348. 

[25] A. Trabelsi, M. Chaabane, and A. Ben-Hur, “Comprehensive evaluation of deep learning 
architectures for prediction of DNA/RNA sequence binding specificities,” Bioinformatics, vol. 35, 
no. 14, pp. i269–i277, Jul. 2019, doi: 10.1093/bioinformatics/btz339. 

[26] B. Alipanahi, A. Delong, M. T. Weirauch, and B. J. Frey, “Predicting the sequence specificities of 
DNA- and RNA-binding proteins by deep learning,” Nat. Biotechnol., vol. 33, no. 8, pp. 831–838, 
Aug. 2015, doi: 10.1038/nbt.3300. 

[27] “ENCODE-DREAM in vivo Transcription Factor Binding Site Prediction Challenge - 
syn6131484.” [Online]. Available: https://www.synapse.org/#!Synapse:syn6131484/wiki/415139. 
[Accessed: 03-Oct-2019]. 

[28] J. Keilwagen, S. Posch, and J. Grau, “Accurate prediction of cell type-specific transcription factor 
binding,” Genome Biol., vol. 20, no. 1, p. 9, Jan. 2019, doi: 10.1186/s13059-018-1614-y. 

[29] E. K. Farley, K. M. Olson, W. Zhang, D. S. Rokhsar, and M. S. Levine, “Syntax compensates for 
poor binding sites to encode tissue specificity of developmental enhancers,” Proc. Natl. Acad. Sci. 
U. S. A., vol. 113, no. 23, pp. 6508–6513, 07 2016, doi: 10.1073/pnas.1605085113. 

[30] M. AlQuraishi, “End-to-End Differentiable Learning of Protein Structure,” Cell Syst., vol. 8, no. 4, 
pp. 292–301.e3, Apr. 2019, doi: 10.1016/j.cels.2019.03.006. 

 


