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Single-cell RNA sequencing (scRNA-seq) enables com-
prehensive quantitative characterization of a cell’s mRNA
profile and has resulted in novel findings about the molec-
ular circuitry of cell populations [1, 2]. Extending scRNA-
seq, cellular indexing of transcriptomes and epitopes
by sequencing (CITE-seq) simultaneously measures the
abundance of selected proteins on the cell surface with
results comparable to gold-standard flow cytometry [3].
As surface proteins are routinely used as a measure of
cell phenotype, CITE-seq provides an exciting new op-
portunity for enhancing the quality of data interpretation
[3, 4, 5], especially as the number of assayed proteins
per experiment grows (with over 300 barcoded-antibodies
commercially available [6]). Recent approaches to CITE-
seq data analysis consist of deriving clusters based on the
mRNA data and mapping protein values to these clusters
for the task of cell-type labeling. However, this strategy
assumes that cell-cell similarities depend only on mRNA,
and neglects the distinctive information contained in the
protein measurements. We aim to combine both measure-
ments into one representation of cell state, while address-
ing the unique technical biases of each modality.

A reasonable modeling assumption is that both mRNA
and protein counts are generated from a low-dimensional
manifold of cellular states [1]. While a flourishing body
of research has focused on using generative models to
learn a biologically meaningful low-dimensional repre-
sentation of cells in scRNA-seq datasets [7, 8, 9, 10], no
proposed method can additionally handle the complexi-
ties of the protein counts. CITE-seq protein counts are
overdispersed like mRNA counts, but do not suffer from
limited capture efficiency. Instead, the protein counts are
obscured by a non-negligible background signal, which
may arise due to non-specific binding of antibody probes
and/or ambient antibodies. As a result, the distribution
of protein counts across cells is often bimodal with a
background and foreground component. A natural way to
preprocess the protein counts is to fit a mixture model to
each protein globally and replace a count with its probabil-
ity of being generated from the larger component [11, 12].
However, there is no basis for assuming global bimodality

of protein counts since a dataset typically comprises het-
erogeneous populations of cells each with distinct surface
proteomes. Consequently, using the same signal-noise
decision boundary for all cells can be inappropriate.

Here we propose Total Variational Inference (totalVI),
a coupled generative model and inference procedure for
CITE-seq data, which addresses these issues. In totalVI,
both mRNA and protein counts of a cell are assumed to
be random variables generated from a low-dimensional
latent variable that represents the underlying biological
state of a cell and contains information from both do-
mains. Such a framework enables end-to-end analysis of
this data – a joint batch-corrected latent representation
(for stratifying cells into types), denoised data in both do-
mains, and differential expression of genes and proteins.
totalVI leverages advances in stochastic optimization and
easily scales to millions of cells.

1 The totalVI probabilistic model

A CITE-seq experiment produces two vectors for a cell n,
xn and yn, where xnr is the number of mRNA molecules
detected for gene r and ynt is the number of cell surface
molecules detected for protein t. Furthermore, a dataset
has R genes and T assayed proteins. Let sn be the batch
cell n was processed in (one-hot encoded) with a total of
B batches.

Let zn be a latent variable describing the biological state
of cell n. Given zn and a cell-specific scaling factor `n
representing technical factors like the mRNA sequencing
depth, xnr follows a negative binomial distribution with
gene-specific inverse dispersion and with the prior for
`n set as in [7]. Let µnt be a latent variable represent-
ing the mean of the background distribution for the pro-
tein counts, sampled from a protein-batch-specific prior.
Given zn and µnt, we model ynt as a negative binomial
mixture to capture observed protein counts arising from
the background or foreground. The mean parameters of
the mixture components are structured such that the fore-
ground mean is strictly larger than the background mean,
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Algorithm 1: The totalVI generative model. The negative binomial distribution is parameterized by its mean and
inverse dispersion. Let ν be the set of model parameters described here.

Define: Neural networks f(zn, sn; Λ) : ∆K−1 × {0, 1}B → ∆R−1, h(zn, sn; Λ) : ∆K−1 × {0, 1}B → RT
Require: Inverse dispersion parameters θ ∈ RR+, φ ∈ RT+. Neural network parameters Ξ,Ψ,Ω.
for each cell n do

zn ∼ LogisticNormal(0, I) K-dimensional biological state variable
ρn = f(zn, sn; Ξ) R-dimensional mRNA frequency
αn = ReLU(h(zn, sn; Ψ)) + 1 T -dimensional foreground increment protein scaling
πn = sigmoid (h(zn, sn; Ω)) T -dimensional mixture parameter
`n ∼ LogNormal(`µ, diag(`σ2)I) B-dimensional cell scaling factor for mRNA
for each gene r do

xnr ∼ NegativeBinomial
(
ρnrs

>
n `n, θr

)
for each protein t do

µnt ∼ LogNormal(c>t sn, d
>
t sn) Scalar background mean

vnt ∼ Bernoulli(πnt) Scalar foreground/background mixing variable
if vnt = 1 then

ynt ∼ NegativeBinomial (µnt, φt)
else

ynt ∼ NegativeBinomial (µntαnt, φt)

which also identifies the mixture as the inverse dispersion
parameter is shared between components.

The full generative process is outlined in Algorithm 1.
The prior parameters for µnt are learned in a variational
Bayesian inference fashion. The neural networks are
dense with one hidden layer, ReLU activations, batch nor-
malization and dropout. Notably, zn follows a logistic
normal distribution, meaning cells can be interpreted as
having “membership” to dimensions of the latent space
and that archetypal analysis can be performed (not shown)
[13, 14].

2 Inference

We use variational inference to obtain the approximate
posterior distribution

qη(µn | zn, sn)qη(zn | xn, yn, sn)qη(ln | xn, sn),

where η is the set of parameters of an inference network—
a neural network that takes a cell’s combined expression
as input and outputs the parameters of the approximate
posterior. The variational distribution qη(µn | zn) has
parameters specific to the cell n and not global parame-
ters like the prior. We optimize the evidence lower bound
(ELBO) [15] of log pν(x1:N , y1:N | s1:N ) with respect
to the variational parameters η and model parameters ν
using stochastic gradients [16]. To avoid inference over
discrete random variables, we analytically integrate out
vnt, yielding pν(ynt|zn, µnt), which is a mixture of neg-
ative binomials. We use the Adam optimizer [17], along
with deterministic warm-up, and a reduction of the learn-
ing rate upon plateau of the ELBO on a validation set.

3 Performance benchmarks

We assess the performance of totalVI on two tasks: gener-
alization to held-out data and posterior predictive checks

(PPC) of coefficient of variation. We compare totalVI to
factor analysis (FA) in which we either fit on the data that
is logarithmized plus one (log), or log normalized data
where the two modalities are independently normalized
by their library size prior to log transformation (log rate).
We also compare to the state-of-the-art scRNA-seq model,
scVI [7], where we treat the protein data as additional
features (genes) and use a negative binomial likelihood
distribution for both mRNA and protein counts.

For each of these tasks, we use two datasets: (1) 7,225 pe-
ripheral blood mononuclear cells (PBMC10k) from 10X
Genomics [18] and (2) 8,412 cells from a MALT tumor
(MALT) [19]. We first remove genes that are expressed in
fewer than 1% of cells and retain the top 5,000 genes as
measured by variance across cells. Both datasets contain
14 proteins. We filter cells that were below the first per-
centile for protein UMI counts and had expressed fewer
than 500 genes. For PBMC10k we filter doublets using
DoubletDetection [20].

Generalization to held-out data We compare totalVI
to scVI and the FA baselines using 20 latent dimensions
for each method. For each model, we compute separately
for protein and gene features the mean squared logarith-
mic error (MSLE) between the observed values and the
mean of the posterior predictive distribution on a held-out
subset representing 6% of the total dataset. For example,

MSLERNA =
1

NR

∑
n,r

(
log

x̂nr + 1

xnr + 1

)2

where x̂nr = Epν(x∗
nr|xn,yn) [x∗nr], the mean of the poste-

rior predictive, while MLSEProtein is computed using y1:N
instead. Table 1 shows that totalVI has lower MSLE with
respect to mRNA and proteins, which can be attributed to
the superior noise model for proteins used in totalVI.
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Figure 1: Investigation of totalVI background prediction for CD16 protein counts in PBMC10k.

We also compute the held-out log-likelihood for totalVI
and scVI. Table 2 shows that totalVI outperforms scVI on
both datasets. As log-likelihoods for models with discrete
and continuous likelihoods are not directly comparable,
we computed the calibration error [21] in order to quantify
the quality of each model’s uncertainty estimates. totalVI
and scVI have lower calibration error than FA models
(results not shown).

PBMC10k MALT

Model Protein RNA Protein RNA

FA (log) 0.935 0.167 0.938 0.169
FA (log rate) 0.860 0.125 0.870 0.121
scVI 0.739 0.105 0.474 0.103
totalVI 0.599 0.103 0.431 0.098

Table 1: Mean squared logarithmic error between observa-
tions and the mean of the posterior predictive distribution.

Model PBMC10k MALT

scVI 3349.44 3180.80
totalVI 3337.89 3158.78

Table 2: Negative log likelihood on held-out data.

PBMC10k MALT

Model Protein RNA Protein RNA

FA (log) 1.515 2.119 8.075 2.647
FA (log rate) 0.691 1.146 1.646 1.466
scVI 0.389 0.082 0.725 0.139
totalVI 0.164 0.023 0.620 0.066

Table 3: CV PPC. Median absolute error.

Posterior predictive checks We perform a PPC [22] of
the coefficient of variation (CV) for each protein and each
gene. For each model, we sample the posterior predictive
distribution 25 times, calculating the CV for each sample
and for each feature. After averaging over samples, we
separate the predicted CVs by feature type (mRNA or
protein), resulting in two vectors: CVRNA and CVProtein.
We report the median absolute error between the observed

and the predicted CVRNA and CVProtein. Table 3 shows
that totalVI outperforms other methods in both modalities
indicating better model fit.

4 Protein background disentanglement

Disentangling background and foreground protein counts
is crucial for mitigating spurious differential expression
and cell-type labeling results. Previous work derives a
linear cutoff on the number of counts for each protein
based on spiked-in cells that do not express the proteins
specifically recognized by the barcoded antibodies [3].
Others fit mixture models to each protein, which assumes
that all cells are subject to the same background distri-
bution [11, 12]. Our approach, which obviates the need
for negative control cells or the assumption of a constant
background distribution, models each ynt|zn, µnt as a
negative binomial mixture, where the Bernoulli parameter
πnt|zn can be interpreted as the probability that a cell’s
protein count came from the background. Thus, decision
boundaries are cell-protein-specific, taking into account
the overall state of the cell (genes and proteins).

As an example, consider the CD16 protein in PBMC10k
(Figure 1). We highlight a subset of cells that could
be called background by a global mixture model
but are predicted to be foreground by totalVI (blue:
Eqη(zn|xn,yn)[πnt] < 0.1). We also highlight a subset
of cells with similar magnitude of expression as the blue
set but with higher predicted background probability (red:
Eqη(zn|xn,yn)[πnt] > 0.9). Consistent with the model,
we observe that the foreground-predicted subset (blue)
corresponds to natural killer cells and CD16+ monocytes
(both of which are known to express CD16), while the
background subset of cells (red) correspond to the other
PBMC cell types (which do not tend to express CD16;
note that cell-types were determined by mRNA).

Figure 1 also shows that mRNA counts of the CD16 gene
are high in the foreground and low in the background
subset. Thus, totalVI makes a non-trivial prediction that
goes beyond a simple cutoff – by leveraging information
between all cells, genes, and proteins.
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Despite using a two-component mixture density, totalVI
can also disentangle the background of proteins that are
trimodal globally. For example, it has been shown using
flow cytometry that monocytes have fewer CD4 protein
molecules on their surface relative to CD4+ T-cells [23]
and that other PBMC types do not tend to express CD4 on
their surface. As such, the distribution of the CD4 protein
in PBMC10k is trimodal (lowest mode corresponding to
background).
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Figure 2: CD4 Protein disentanglement in PBMC10k.
(Left) Distribution of log counts for CD4 protein. (Right)
Eqη(zn|xn,yn)[πnt] projected on UMAP.

Figure 2 shows the trimodal distribution of CD4 as well
as the probability of background mapped to a UMAP [24]
projection of Eqη(zn|xn,yn)[zn]. The cells we manually
labeled (based on mRNA) as CD4+ T-cells and mono-
cytes are indeed determined to have been mostly gener-
ated from the foreground component, while the remaining
cells fall within the background part. This result is made
possible due to the mixture being conditionally dependent
on zn, thus defining the two modes of the foreground-
background dichotomy in a manner local to the latent
space. These predictions will be critical for quantifying
differential protein expression.

5 Data denoising

Another application of totalVI is data denoising, in which
a denoised expression matrix (mRNA and protein) is pro-
duced that can then be used as input for other downstream
tasks, like building a feature-wise correlation matrix to
identify signaling and regulatory networks, or examin-
ing the dynamics of transcription and translation. The
totalVI denoised expression matrix is constructed by first
replacing xnr with Eqη(zn|xn) [ρnr] for all cells and all
genes. For a protein count ynt, we replace with the quan-
tity Epν(y∗nt,vnt=0,zn|xn,yn) [y∗nt] which is interpreted as
the expected protein count given it was generated by the
foreground component of the mixture, adjusted for the
probability it was generated by the foreground. It is then
normalized so that the denoised protein expression for a
cell n resides in the simplex. Thus, protein counts likely
to have been generated from the background will have
magnitude near zero in the denoised matrix.

We construct Spearman correlation matrices between all
proteins and 500 genes chosen randomly except for the

inclusion of genes that encode for the assayed proteins.
The matrices are derived using (1) denoised expression,
(2) raw counts, (3) posterior predictive counts.
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Figure 3: totalVI posterior predictive and denoised Spear-
man correlations versus raw correlations in PBMC10k.

In Figure 3 we plot the posterior predictive correlations
relative to the raw correlations as well as the denoised
correlations relative to the raw correlations. Correlations
of features derived from the same gene are in red while
all others are in grey. We emphasize that totalVI has
no prior knowledge of RNA-protein translation relation-
ships. We see that the denoised correlations are more
extreme than their raw counterparts, however posterior
predictive correlations largely match the original raw cor-
relations, indicating that extreme denoised correlations
are not symptomatic of fitting a low-dimensional model
and that totalVI is instead likely to restore biological cor-
relations.

6 Dataset harmonization

We demonstrate how totalVI can be used to generate a
batch-corrected joint latent representation by harmoniz-
ing two PBMC datasets (PBMC10k and another dataset
of 5k PBMCs from 10X genomics [25] with genes and
proteins subsetted to match PBMC10k; results in Figure
4). totalVI has a unique advantage over popular methods
based on mutual nearest neighbors [4, 26], as no similarity
metric between cells is necessary, which may be biased
toward one modality. Instead, independence between zn
and sn is a byproduct of the invariance of the prior on zn
to the batch. Another benefit of our method is the ability
to marginalize over batch in order to generate batch-free
denoised values, or perform differential expression over
batches.

No harmonization totalVI

Figure 4: totalVI batch-corrected joint latent representa-
tion visualized with UMAP.
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