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Abstract

The presence of unwanted sources of variation presents a major challenge for the
analysis of large multiplexed perturbational single-cell RNA sequencing (scRNA-
seq) studies. Removal of these nuisance factors typically requires expert knowledge
to identify the factors and the tedious curation of factor associated gene sets.
We propose instead to model unwanted factors with a deep generative modeling
framework under the weak supervision of a control population. Gene expression of
both control and treatment populations are jointly modeled as being generated from
two sets of disentangled latent variables. One variable corresponds to variation
found in both datasets, while the other variable is constrained to vary only to
explain the treatment dataset. Applying our model to a perturbational dataset where
cell cycle is confounding, we find that our model is not only able to learn the
shared source of variation de novo without expert annotation but also learns a more
disentangled representation of the perturbational effects than linear baselines.

1 Introduction

Control population Treatment population

Shared Unshared

Figure 1: Problem setting: Control and
treatment populations from a perturbational
experiment are jointly modeled as being gen-
erated from two sets of disentangled latent
variables. Shapes correspond to variation
present in the control population, while col-
ors correspond to variation introduced by
perturbations.

Single-cell RNA-sequencing is increasingly being
used in large multiplexed experiments to read out
gene expression changes in response to various per-
turbations [1–3]. One challenge is that the starting
population of cells is often already heterogeneous,
hence complicating downstream analysis of the per-
turbational effects of interest. Current approaches to
this problem utilize expert knowledge to identify these
confounding factors [4, 5]. However, these factors are
not always easily identifiable, and their removal may
require painstaking curation of the associated gene set.

Deep generative models have been shown to learn dis-
entangled latent spaces without any supervision [6–8].
More recently, weakly supervised models that take
advantage of auxiliary data have also been described.
In particular, a recent work by Ruiz et al. [9] describes
a method that uses a reference dataset in which factors
of interest are constant to improve disentanglement. In-
spired by this, we hypothesized that in a perturbational
setting a control population can be used as a source of
weak supervision to disentangle non-treatment related
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from treatment related variation. We jointly model the gene expression data of the control and
treatment populations as being generated from two sets of disentangled latent variables: shared and
unshared. Shared latent variables capture variation present in the control and treatment datasets while
the unshared latent variables are constrained to vary only for the treatment dataset.

We fit our model to perturbational data in which it was previously observed that cell cycle effects
were confounding in the treatment population. To evaluate our model, we train low capacity models
to predict treatment and cell cycle effects from each set of latent variables. We show that our model is
not only able to learn the shared source of variation without expert knowledge or annotation but also
learns a more disentangled representation of the perturbational effects than our baselines. We expect
this approach to be broadly useful as these representations are straightforward to use in common
downstream analyses such as clustering and pseudo-time analysis.

2 Related Work

General approaches for removing unwanted sources of variation in scRNA-seq data are limited
because they typically rely upon expert annotation of confounders, or do not utilize data from control
experiments. For example, both f-scLVM and PAGODA make use of annotations derived from
public databases such as MSigDB and REACTOME [4, 5] to identify confounding factors and their
associated gene sets. Similarly, commonly-used single-cell preprocessing pipelines such as Seurat
and SimpleSingleCell use pre-trained classifiers based on curated gene sets to identify cell cycle
effects [10, 11]. To identify unannotated factors, f-scLVM makes sparsity assumptions about their
effects rather than using an external control dataset. In the analysis of their perturbational datasets,
Adamson et al. [1] and Dixit et al. [3] describe PCA-based models for estimating variation attributable
to unwanted factors. However, these models are linear and hence limited in their expressiveness.

In representation learning, deep generative models, such as the variational autoencoder, describe
joint distributions over the data and a latent code [6]. In particular, there has been great interest in
discovering interpretable representations that are disentangled with respect to the actual generative
factors– that is, a given latent variable should vary according to a single generative factor, but be
invariant with respect to all others. Some examples of prominent work include �-VAE and infoGAN
[8, 7, 12]. While deep generative models are usually unsupervised, there has also been recent work
in the semi-supervised and weakly supervised settings that exploit partial annotation or auxiliary
data sources [13, 14]. In particular, we are inspired by the reference-based VAE (rb-VAE) model
described by Ruiz et al. [9] that makes use of a reference dataset in which factors of interest are
constant is available. In this work, we adapt this framework for use in the analysis of perturbational
scRNA-seq datasets.

3 Methods

Model and task description: Let us consider gene expression observations x 2 Rm of m genes
from two cell populations: T = {xi

t}
Nt
i=1, which is the set of Nt cells sampled from the treatment

population, and C = {xi
c}

Nc
i=1, which is the set of Nc cells sampled from the control population.

We jointly model the datasets as being generated by a random process given two sets of generative
factors s 2 Rks and u 2 Rku , that we respectively refer to as shared latent factors and unshared
latent factors. In general, ks,ku << m.

Our goal is to learn a disentangled representation such that s captures variation present in both
datasets, while u captures variation present only in the treatment dataset. Note that this implies that
u should be constant for the control dataset. Hence, we can state the generative process for each
population as follows: for the treatment population, si and ui are first drawn from their respective
prior distributions p(s) and p(u). Then, xi

t is drawn from the conditional distribution p✓(x|s,u). In
contrast, for the control population, si is still drawn per data point, but only a single draw is made
for u. xi

c is then drawn from the conditional distribution p✓(x|s,u = ûc). Formally, our task is to
perform approximate inference of the latent variables s and u.

Inference: We perform inference on the model following Ruiz et al. [9]. For the treatment dataset,
we choose the prior over the latent variables to be p(s) = N (0, I) and p(u) = N (0, I). For the
control dataset, the prior over s is similarly chosen to be N (0, I) but the prior over u is chosen to be
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flat. Since the output is real-valued, we let the generator p✓(x|s,u) be multivariate Gaussian with the
mean given by a neural net with parameters ✓.

The true posterior of the generative model i.e. p✓(s,u|x), is intractable, and hence approximated
by a factorizable probabilistic encoder q�(s,u|x) = q�(s|x)q�(u|x). We define q�(s|x(i)) =
N (s;µ(i),�(i)2) to be Gaussian with mean and standard deviation also computed by a neural net
with parameters �. q�(u|x(i)) is similarly defined. The reparameterization trick then allows for
optimization of the following objective via stochastic gradient descent:

min
✓,�,ûc

Ex⇠T[KL(q�(s|x)q�(u|x)||p(s)p(u))� Eq�(s|x)q�(u|x) log p✓(x|s,u)]+

Ex⇠C[KL(q�(s|x)||p(s))� Eq�(s|x) log p✓(x|s, ûc)]

One problem is that since samples from the control population are reconstructed directly from the
learned parameter ûc, q�(u|x) does not necessarily have to learn to encode uc given C. That is,
q�(u|x) could learn to encode samples from C arbitrarily, since samples are not reconstructed
from doing inference on uc. However, it should be desirable for q�(u|x) to also encode uc in a
semantically meaningful way with respect to ut. Hence, we propose to also maximize the likelihood
of encoding samples of C as ûc i.e. by also minimizing Ex⇠C log q�(ûc|x). We refer to the model fit
with the original framework as rb-VAE, and this modification as rb-VAE-e. Further implementation
details may be found in the appendix.

4 Results

Dataset: We consider a perturbational single-cell RNA-sequencing dataset in which cell cycle was
observed to be a major source of confounding variation. In this dataset, all single, double and triple
combinations of CRISPR perturbations targeting the three branches of mammalian unfolded protein
response (UPR) were introduced to K562 cells. Then, cells were treated with a pharmacological
inducer of UPR, thapsigargin. In addition, a control cell population was treated with DMSO [1]. We
hypothesized that cell cycle should be a prominent source of variation in the control population, and
so the control population would provide good supervision for our modeling framework. The datasets
were preprocessed using Seurat’s standard preprocessing pipeline (See appendix) [10]. The model
was fit using 10 random 80-20 training-test splits of the data.

Baseline models: We compared our model to two PCA-based linear baselines: In the first, PCA was
first fit to the control dataset. A second PCA was then fit to the residual, which was computed by
subtracting the treatment dataset from its reconstruction using the first PCA. In the second, after
computing the scores using the first PCA on the treatment dataset, we fit a linear regression model
to predict the treatment data from its scores instead. A second PCA is then fit to the residual of
the linear model. We refer to this second approach as PCA-lr. In both cases, the scores of the first
PCA were regarded as the shared variables, while the scores of the second PCA were regarded as the
unshared variables. We also compared our model to the fully unsupervised method �-VAE. Since
�-VAE does not automatically partition its variables into shared and unshared, we defined them as
the top variables most predictive of each source of variation. For all models, we set the size of the
unshared and shared latent variables to 8, for a total of 16.

Reconstruction error: We first evaluated reconstruction error on the held-out test set. As expected,
we observe that the original rb-VAE framework can result in arbitrary decoding of the control dataset,
as can be seen from the higher reconstruction error when performing inference on u. Our modified
framework achieves lower reconstruction error on not only the control but also the treatment dataset,
suggesting that the model is encoding uc in a more meaningful way with respect to ut.

Disentanglement metrics: To measure disentanglement, we fit low capacity linear models to predict
the known factors of variation given s, u, and the concatenated set [s;u], using 80-20 training-test
splits. We fit logistic regression models to predict perturbation identity, and elastic net models to
predict the expression of three cell cycle genes that are highly variable in the dataset: CCNB1,
CENPA, and PKL1 (See appendix). In all cases, 5-fold cross-validation was performed over the
training split to select regularization strength.
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Table 1: Model benchmarking results: For reconstruction, we report mean squared error averaged
over ten random held-out test sets. For disentanglement, we report macro-averaged F1 performance
on predicting the perturbation received and r2 on predicting expression of CCNB1 on a randomly
held-out test set. Mean and standard deviation is reported over the ten random training/test splits. Top
two best methods for each metric is highlighted in bold. Full results can be found in the appendix.

Reconstruction Disentanglement
s u

Model Control Treatment F1 r2 (CCNB1) F1 r2 (CCNB1)

rb-VAE 3705.51 1918.45 .183 ± .033 .383 ± .019 .739 ± .014 .106 ± .009
rb-VAE-e 1722.06 1905.80 .214 ± .020 .403 ± .016 .760 ± .019 .095 ± .008

PCA 1730.72 1908.29 .242 ± .009 .449 ± .005 .762 ± .006 .174 ± .004
PCA-lr 1726.22 1915.29 .242 ± .009 .449 ± .005 .615 ± .013 .022 ± .008

�-VAE, �=1 1754.85 1913.89 .544 ± .123 .432 ± .031 .709 ± .023 .264 ± .083
�-VAE, �=2 1728.14 1888.52 .544 ± .074 .439 ± .019 .678 ± .015 .263 ± .066
�-VAE, �=4 1713.67 1918.88 .510 ± .053 .411 ± .028 .634 ± .018 .265 ± .055

Figure 2: UMAP visualization of latent variables learned by rb-

VAE-e and PCA for a particular seed. Top: cells are colored by
CCNB1 expression. Bottom: cells are colored by whether they received
a gRNA targeting only PERK

We find that the unshared
variables learned by rb-
VAE-e are highly predictive
of perturbation identity rel-
ative to predictive perfor-
mance on the concatenated
set, as well as other meth-
ods. Furthermore, it is less
correlated with cell cycle ef-
fects (Table 1, Appendix).
For example, the unshared
variables learned by PCA
are also strongly predictive
of perturbation identity but
are more correlated with
cell cycle effects. We vi-
sualize this in Figure 2 by
computing the UMAP pro-
jection of the latent spaces.
Similarly, the unshared variables learned by PCA-lr are very weakly predictive of cell cycle effects,
but are far less predictive of perturbation identity.

We also observe that the shared variables learned by our model are both less predictive of perturbation
identity and cell cycle effects than other models. However, we note that the concatenated set for
rb-VAE-e is also slightly less predictive of cell cycle (See appendix). We hypothesize that given the
slightly lower reconstruction error of our model, it could be that s is encoding more variation within
the dataset and hence presents a harder task of predicting cell cycle effects. Model performance on
the other two cell cycle genes tested followed the same trends as CCNB1.

Both rb-VAE variants and the linear baselines outperformed the fully unsupervised �-VAE, suggesting
that methods that make explicit use of the control population are better at disentanglement.

5 Conclusion

In this work, we present a modeling framework for disentangling unwanted sources of variation
in a perturbational setting by exploiting information available in a control dataset. We show that
our model not only learns the unwanted source of variation without any annotation required but
also produces a more disentangled representation of the perturbational effects than unsupervised
approaches as well as weakly supervised linear baselines. Representations learned by the model can
be used in typical downstream analysis tasks that require low-dimensional projections of scRNA-seq
data.
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Appendix

1 Implementation

The architecture of the neural networks used for the deep generative models (rb-VAE, rb-VAE-e,
�-VAE) are as follows:

Encoder(
(encoder): Sequential(
(0): Linear(in_features=2159, out_features=1024, bias=True)
(1): LeakyReLU(negative_slope=True)
(2): Linear(in_features=1024, out_features=1024, bias=True)
(3): LeakyReLU(negative_slope=True)
(4): Linear(in_features=1024, out_features=16, bias=True)

)
)

Decoder(
(decoder): Sequential(
(0): Linear(in_features=16, out_features=1024, bias=True)
(1): LeakyReLU(negative_slope=True)
(2): Linear(in_features=1024, out_features=1024, bias=True)
(3): LeakyReLU(negative_slope=True)
(4): Linear(in_features=1024, out_features=2159, bias=True)

)
)

All models were fit using the adam optimizer with a learning rate of 1e-4, � = (0.9, 0.999) and
a batch size of 64. Models were trained for a maximum of 250 epochs. The model with the best
error on the training set was then used for downstream evaluation. All neural network models were
implemented in pytorch 1.1.0.

Regarding inference for rb-VAE/rb-VAE-e: Ruiz et al. [1] describe in their work a symmetric varia-
tional extension to prevent the model from finding the solution p(x|s,u) = p(x|s) in the case where
s is too expressive. Empirically, we observe that limiting the size of s prevents the generator from
ignoring the unshared variable and allows for a simpler learning algorithm.

Logistic regression and elastic net models are default models implemented in scikit-learn 0.21.2.
They were trained using 5-fold cross-validation on the training set to select regularization strength.

2 Data preprocessing

Raw data was downloaded from GEO at accession number GSM2406677. Cells flagged as having
good coverage, containing only 1 cell, and with a assigned guide identity were retained. Data was
then processed using Seurat’s default pipeline [2]. Thapsigargin-treated cells (gem group 2) were
assigned as treatment cells, while DMSO-treated cells (gem group 3) were assigned as control cells.
A set of differentially expressed genes with respect to the perturbations were determined as described
by the original authors (i.e. mean UMIS per cell � 0.5 and KS test statistic D 0.15 for at least one
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perturbation) [3]. This resulted in a set of 4722 cells and 2159 genes. Data was then scaled for input
into downstream models.
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3 Cell cycle genes

The cell cycle genes chosen for estimating cell cycle effects are three highly variable genes within the
gene set previously known to be associated with cell cycle. CCNB1 encodes for G2/mitotic-specific
Cyclin B1 and is expressed in the G2/M phase. [4]. CENPA encodes for CENP-A is regulated by
cell cycle and is involved in centromere function [5]. PLK1, also known as STPK13, is also known
to vary with cell cycle, and is most highly expressed in G2/M [6].

4 Extended results

4.1 Full benchmarking results

Table 1: Model benchmarking results on s

Perturbation identity Cell cycle effects
Model AUROC AUPRC F1 r2 (CCNB1) r2 (CENPA) r2 (PLK1)

rb-VAE .221 ± .033 .210 ± .030 .183 ± .033 .383 ± .019 .468 ± .010 .421 ± .016
rb-VAE-e .245 ± .022 .244 ± .021 .214 ± .020 .403 ± .016 .473 ± .006 .435 ± .009
PCA .288 ± .012 .275 ± .007 .242 ± .009 .449 ± .005 .494 ± .002 .473 ± .004
PCA-lr .288 ± .012 .275 ± .007 .242 ± .009 .449 ± .005 .494 ± .002 .473 ± .004
�-VAE, �=1 .556 ± .106 .551 ± .118 .544 ± .123 .432 ± .031 .516 ± .016 .493 ± .013
�-VAE, �=2 .553 ± .071 .550 ± .071 .544 ± .074 .439 ± .019 .496 ± .018 .481 ± .016
�-VAE, �=4 .520 ± .047 .517 ± .054 .510 ± .053 .411 ± .028 .465 ± .024 .435 ± .032

Table 2: Model benchmarking results on u

Perturbation identity Cell cycle effects
Model AUROC AUPRC F1 r2 (CCNB1) r2 (CENPA) r2 (PLK1)

rb-VAE .749 ± .014 .733 ± .014 .739 ± .014 .106 ± .009 .117 ± .023 .156 ± .024
rb-VAE-e .771 ± .020 .754 ± .019 .760 ± .019 .095 ± .008 .097 ± .016 .130 ± .014
PCA .771 ± .005 .756 ± .007 .762 ± .006 .174 ± .004 .304 ± .012 .269 ± .008
PCA-lr .635 ± .013 .611 ± .012 .615 ± .013 .022 ± .008 .044 ± .002 .044 ± .003
�-VAE, �=1 .720 ± .021 .703 ± .024 .709 ± .023 .264 ± .083 .276 ± .104 .313 ± .112
�-VAE, �=2 .685 ± .014 .674 ± .015 .678 ± .015 .263 ± .066 .261 ± .091 .302 ± .095
�-VAE, �=4 .643 ± .018 .632 ± .018 .634 ± .018 .265 ± .055 .250 ± .057 .308 ± .075

Table 3: Model benchmarking results on [s; u]

Perturbation identity Cell cycle effects
Model AUROC AUPRC F1 r2 (CCNB1) r2 (CENPA) r2 (PLK1)

rb-VAE .771 ± .013 .758 ± .013 .763 ± .013 .472 ± .009 .539 ± .007 .510 ± .009
rb-VAE-e .788 ± .017 .773 ± .017 .779 ± .017 .477 ± .006 .525 ± .009 .502 ± .007
PCA .797 ± .006 .782 ± .005 .788 ± .006 .491 ± .001 .561 ± .002 .526 ± .003
PCA-lr .838 ± .006 .820 ± .004 .827 ± .005 .492 ± .002 .550 ± .001 .528 ± .003
�-VAE, �=1 .748 ± .013 .733 ± .013 .739 ± .013 .436 ± .035 .526 ± .014 .502 ± .016
�-VAE, �=2 .709 ± .010 .695 ± .010 .700 ± .010 .447 ± .016 .503 ± .014 .493 ± .008
�-VAE, �=4 .662 ± .013 .650 ± .012 .654 ± .013 .422 ± .013 .469 ± .018 .452 ± .015
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4.2 UMAP visualization of latent space

In all figures, results are shown for �-VAE when � = 1.

Figure 1: UMAP visualization of s for a particular seed. Cells are colored by whether or not they
received a particular perturbation.

Figure 2: UMAP visualization of u for a particular seed. Cells are colored by whether or not they
received a particular perturbation.
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Figure 3: UMAP visualization of [s;u] for a particular seed. Cells are colored by whether or not
they received a particular perturbation.

Figure 4: UMAP visualization of latent variables for a particular seed. Cells are colored by
expression of three cell cycle genes.
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