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Abstract

Single-cell transcriptomic studies are identifying novel cell populations with ex-1

citing functional roles in various in vivo contexts, but identification of succinct2

gene-marker panels for such populations remains a challenge. In this work we3

introduce COMET, a computational framework for the identification of candidate4

marker panels consisting of one or more genes for cell populations of interest5

identified with single-cell RNA-seq data. We show that COMET outperforms6

other methods for the identification of single-gene panels, and enables, for the7

first time, prediction of multi-gene marker panels ranked by relevance. Staining8

by flow-cytometry assay confirmed the accuracy of COMET’s predictions in iden-9

tifying marker-panels for cellular subtypes, at both the single- and multi-gene10

levels, validating COMET’s applicability and accuracy in predicting favorable11

marker-panels from transcriptomic input. COMET is a general non-parametric12

statistical framework and can be used as-is on various high-throughput datasets in13

addition to single-cell RNA-sequencing data. COMET is available for use via a14

web interface or a standalone software package.15

1 Motivation16

Single-cell transcriptomic studies have enabled the exciting discovery of novel cell populations within17

various in vivo contexts [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]. Following the discovery of a new cell18

population based on full transcriptome analysis, follow-up studies require succinct gene-marker19

panels by which the cells of interest can be distinguished from the general cell population. Current20

techniques used in the literature for the identification of candidate marker-panels are substantially21

limited because they rely on statistical tests designed for other purposes (such as gene differential22

expression), do not consider gene combinations, and require extensive manual curation.23

A broadly used technique for candidate marker-panel annotation from single-cell RNA-seq data24

consists in generating a ranked list of genes based on their upregulation in the cluster of choice and/or25

expression fold-change estimates [1, 4, 5, 13, 6, 7, 8, 11]. Extensive manual curation is then required26

to evaluate genes at the top of the list for their ability to provide good classifiers and for their ability27

to pair with each other to construct multiple-gene marker panels. Substantial limitations in the use of28
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such techniques is that they do not directly test for a gene’s ability to isolate a given cell population29

from a background, and importantly, the genes constructing a successful multi-gene panel may not be30

favorable as single-gene markers.31

Development of computational tools that provide useful guidance to researchers is difficult due to32

the scale and hardness of the algorithmic problem and limited availability of experimental reagents33

(e.g. antibodies for flow or in situ staining, probes for FISH). The latter requires that a marker panel34

prediction framework be broad by suggesting multiple (ranked) candidate marker-panels to the user,35

to be assessed for reagent availability and accuracy. Nonetheless, the need within the community to36

transition from observations at the single-cell level to functional studies calls for the development of37

a computational framework that can generate an informative ranking of candidate multi-gene marker38

panels.39

2 COMET Tool40

In this work we introduce COMET (COmbinatorial Marker dEtection from single-cell Transcrip-41

tomics), a computational framework that detects candidate marker panels consisting of one or more42

genes for cell populations of interest identified with high-throughput single-cell data. COMET takes43

as input a gene-by-cell expression matrix with cluster assignment for each cell and outputs a separate44

directory for each cluster that includes ranked lists of candidate marker panels along with informative45

statistics and visualizations.46

COMET implements the XL-minimal Hypergeometric test (XL-mHG test) [14, 15] to binarize47

gene expression data in a gene-specific and cluster-specific manner. For each gene G and cluster48

K, all cells in the data set are sorted in decreasing order of the expression of G. The test selects a49

cutoff index that maximizes the hypergeometric enrichment of cells in K (with respect to cells in the50

complement of K, which we denote by C) at the top of the list. The chosen cutoff index translates51

into an expression threshold which is used to binarize gene expression data. X and L are parameters52

that can be used to control the minimum number of true-positives (X) and the maximum number of53

false-positives (L−X).54

COMET outputs a ranked list of candidate single-gene markers (by integrating theXL-mHG p-values55

and the log-fold-change of gene expression) and provides the true-positive (TP) and true-negative56

(TN) rates for each marker candidate. Genes are also tested for their potential to be used as negative57

markers. COMET also leverages the binaried expression data to construct multiple-gene marker58

panels via logical operations. A ranking of candidate multi-gene panels is done based on enrichment59

of cells expressing the entire gene-panel in the cell cluster of choice (hypergeometric enrichment60

p-value) combined with a “Cluster-Clear Score” (CCS)61

CCS =
∑

C∈CrK

(TNafter
C − TN before

C )

where TNafter
C is the true negative percent in cluster C for the single gene in the panel with the62

lowest p-value when considered as a single-gene marker and TN before
C is the true negative percent in63

cluster C for the panel (after addition of the remaining genes in the panel). COMET outputs a ranked64

list of candidate marker panels for each marker panel size (of 2-4 genes) along the true-positive (TP)65

and true-negative (TN) rates the given combination would achieve. TP and TN rates are efficiently66

computed using matrix multiplications on the binarized expression matrices.67

3 Statistical Properties68

TheXL-mHG test enjoys desirable properties for the purpose of marker detection, as shown by Monte69

Carlo simulations using Gaussian synthetic expression data for one gene in many cells (Figure 1A,B).70

COMET was compared to several gene Differential Expression (DE) tests frequently used to identify71

single-gene marker panels [16, 17, 7]. Common gene DE tests included in the comparison are Welch’s72

t-test, the Wilcoxon Rank-Sum test, the Kolmogorov-Smirnov test and the Likelihood Ratio test on73

a logistic regression model where cell cluster (Ci = 1 if cell i belongs to the cluster of interest, 074

otherwise) is regressed against an intercept only or both an intercept and the expression value of the75

gene (Xi) in that cell76

Ci|Xi ∼ Bernoulli(σ(β0 + β1Xi)) vs. Ci|Xi ∼ Bernoulli(σ(β0))
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Figure 1: COMET accurately computes single-gene markers for cell populations. The XL-mHG test outperforms
various differential expression tests in identifying favorable marker genes from simulated datasets (A), with
respect to both robustness to small effect-sizes (mean difference between the cluster of interest K and the cluster
of all remaining cells C) (B, left) and sensitivity to sample size (B, right). Error bars indicate one standard
deviation across 100 simulation runs.

where σ(·) is the logistic function. Simulations showed that the COMET procedure detects good77

markers and discards poor markers regardless of sample size, contrary to other tests whose power78

increases rapidly with sample size (Figure 1B). The X and L parameters of the XL-mHG test play79

an important role in this favorable behavior.80

The binarization of gene expression implemented in COMET can be related to a classification81

task. To assess COMET’s performance compared to standard classifiers [17, 18], we performed82

simulations on cell-by-gene count matrices using a noisy Poisson-Gamma generative model for gene83

counts data (Figure 2A) which replicates both technical noise and efficiency noise in scRNA-seq84

[19, 20]. Synthetic expression data was generated for two cell clusters (the cluster of interest K and85

a ‘background’ cluster C) and many genes pertaining to three categories: good markers (s genes86

G1, ..., Gs which separate well the two clusters), poor markers (e.g. markers of cell sub-clusters,87

measurement outliers) and non-markers (genes with similar expression across both clusters).88

We used each of XL-mHG test, Logistic Regression (LR), Random Forest (RF) and Extremely89

Randomized Trees (XT) to construct a ranking of potential markers, and compared the methods’90

rankings to the optimal ranking (known from the simulation engine) using the Scaled Sum of Ranks91

(SSR) metric. We defined SSR to determine the extent to which the good markers are ranked at the92

top of the list93

SSR(M) =
2

s(s+ 1)

s∑
j=1

rank(Gj |M)

where M refers to the method used to rank the genes (XL-mHG p-value, RF and XT Gini importance94

metric or LR p-value). An SSR score of 1 reflects a ranking in which all good markers are ranked95

at the top of the list, in higher places than any of the poor markers and the non-markers. Generally,96

for the SSR score lower is better. We compared the SSR scores across the LR, RF and XL-mHG97

classification methods and observed that poor markers had a detrimental effect on the identification98

of good single-gene markers by LR and RF, while the XL-mHG test was robust to the quantity99

and expression rates of poor markers in the data (Figure 2B,C). The X and L parameters play an100

important role in protecting COMET against the selection of genes which constitute poor markers for101

the cluster of interest yet enjoy a strong predictive power (such as sub-cluster markers).102

4 Experimental Validation103

To assess COMET’s ability to identify novel surface single-gene markers from real data we evaluated104

COMET’s prediction of cell surface markers for splenic B cell populations using data from the Mouse105

Cell Atlas [21]. We compared the rankings of known single-gene markers obtained by COMET106

to rankings obtained with other differential expression tests (Welch t-test, Wilcoxon Rank-Sum107

test, Likelihood Ratio test, MAST hurdled t-test). COMET performs well in identifying known108

single-gene markers for the different cell populations identified in the spleen, and performs slightly109

higher or comparable to other methods. Flow-cytometry based assay revealed that the additional110
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Figure 2: The XL-mHG test outperforms standard classifiers for single-gene marker recovery on simulated
gene counts data. A, a noisy Poisson-Gamma model (left and top right) is utilized to generate a cell-by-gene
matrix of true counts. Technical and efficiency noises are introduced using an efficiency scaling factor followed
by Poisson resampling (top right). This procedure produces gene count matrices of the type shown on the bottom
right. B, SSR versus proportion of poor markers in the data set (top left). The XL-mHG picks up the correct
good markers regardless of the proportion of poor markers, while this proportion affects both LR, RF and XT.
Out-of-bag error (OOB error) is included for RF and XT (top right). We also display the SSR versus mean of
poor markers in the data set (bottom left). The XL-mHG test picks up the correct good markers regardless of
the mean of poor markers. Poor markers with very high expression are valuable for RF and XT, and contribute
to increase the fold change between the cluster of interest K and the background C, resulting in suboptimal
performances for LR. Out-of-bag error (OOB error) is included for RF and XT (bottom right). Error bars
indicate one standard deviation across 20 simulation runs.

top-ranking candidates Ly-6D and CD79b co-stain well with the well-known B cell marker CD19111

[22] and showed limited co-staining with known T cell marker CD3 [23], showing their specificity as112

B cell markers. This confirms the accuracy of COMET’s predictions for single-gene marker panels.113

Extended results and methods are available in the published COMET manuscript [24].114

We envision a primary use for COMET in the identification of candidate marker-panels for subpopula-115

tions of a given cell type. Isolating cell subtypes requires identifying multiple-gene marker panels as116

single-gene markers may not be sufficient to accurately sort the cells. We therefore tested COMET’s117

ability to detect marker combinations for the follicular B cell subpopulation using the Tabula Muris118

dataset [25]. COMET predicted the combination (CD62L+CD44-) for the isolation of follicular119

B cells. We observed that flow cytometry of CD62L+CD44- cells yields a significantly cleaner120

population of follicular B cells (defined as CD23-positive) than CD62L alone. We also sorted cells121

based on the highly ranked combination CD55+CD62L+ and observed an improvement compared to122

using either CD62L+ or CD55+ alone. Importantly, the combinations for validation were selected123

by their COMET ranking as well as by antibody availability. The combinations assessed ranked 22124

(CD62L+CD44-) and 38 (CD62L+CD55+). More details and methods on experimental validation125

can be found in the published COMET manuscript [24].126

5 Discussion127

The fast-increasing number of single-cell RNA-seq datasets being generated and analyzed is revealing128

novel cell types and subtypes in a variety of systems. A main contribution of the COMET tool is129

the introduction of a principled framework for identifying multi-gene combinations that constitute130

favorable marker panels for cell clusters of interest. Along with its broad applicability to single-cell131

transcriptomic data, the COMET framework can be utilized for other instances by merely changing the132

input to the available software. We anticipate that the use of COMET will propel the transition from133

novel characterization-focused observations (made via methods such as single-cell RNA-sequencing)134

to targeted studies that focus on functional aspects of the identified cell populations.135
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