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Abstract

Although Bayesian phylogenetic inference is a powerful tool for learning about
evolution, its applicability is limited by computational expense. The current
state-of-the-art consists of random-walk Markov chain Monte Carlo (MCMC)
and counting posterior samples to estimate tree structure support. Random-walk
MCMC converges slowly in the large and complex space of phylogenetic trees,
and counting estimators are noisy and cannot extend posterior mass to unsampled
trees. In this paper, we describe recent progress on using parameterized posterior
approximations to phylogenetic trees in order to better estimate posterior support
and infer Bayesian posterior distributions by direct variational inference.

1 Introduction

The inference of evolutionary history from sequence data is inherently uncertain. Correspondingly,
researchers frequently use a Bayesian approach to infer evolutionary history in the form of a phyloge-
netic tree. Trees consist of a discrete tree structure, called a topology, and branch lengths that express
the amount of evolution that has happened along that edge. The Bayesian approach to phylogenetic
inference targets a posterior distribution on trees given an aligned collection of sequence data.

Bayesian phylogenetic inference is central to modern biology, with applications from inferring
risk factors for recent HIV transmission [1] to reconstructing ancient nucleotide usage patterns [2].
Current Bayesian phylogenetic practice proceeds as follows:

• run a Markov Chain Monte Carlo sampler that uses random tree modification proposals

• estimate topological support as the frequency with which a given tree was in the sample

• if the data or model changes in some way, start over from scratch.

Each of these points have drawbacks. In typical settings with real data, random tree proposals are
likely to either be timid or have low acceptance rates [3]. The simple frequency-based estimator,
while unbiased, need not be optimal and cannot extend support to unsampled trees [4–6]. It is clearly
disavantageous to have to throw away computationally expensive previous inferences when the data
or model changes in some way.

In this paper, we will describe recent progress on representations of phylogenetic posterior distribu-
tions that allow for more flexible and efficient algorithms. This framework:

• enables more efficient variational inference and adaptive tree proposals
∗ematsen@gmail.com; http://matsen.group/

14th Conference on Machine Learning in Computational Biology (MLCB 2019), Vancouver, Canada.

http://matsen.group/


• gives more accurate topology support estimators by leveraging tree structure

• lays a solid framework for re-use of previous inferences when data or model changes.

By establishing these representations and tying them into modern machine-learning and probabilistic
programming packages, we hope to move Bayesian phylogenetic inference into the modern era.

2 The challenge of Bayesian phylogenetic inference

The goal of molecular phylogenetic inference is to reconstruct the evolutionary history of a group of
entities from some biological sequence data (i.e. DNA, RNA, or amino acid sequence). The inference
is formalized as a phylogenetic tree with the observed sequences at the leaves of the tree. Statistical
phylogenetic inference, which now dominates the field, treats phylogenetics as a statistical inference
problem in which one picks among phylogenetic tree models by how well they explain the observed
data [7]. Here the sequence mutation process given a tree is modeled as a continuous-time Markov
chain (CTMC) that are allowed to run the duration of the tree branch lengths. It is very common to
assume that the CTMC is defined per-nucleotide-position and that the sites evolve independently.

Bayesian phylogenetic inference targets the posterior distribution p(z | D) on structures z consisting
of phylogenetic trees along with associated model parameters including branch lengths. To char-
acterize the posterior distribution by Bayes’ rule p(z | D) ∝ p(D | z) p(z) we need the likelihood
p(D | z), which can be calculated quickly using dynamic programming [7], and the prior p(z), which
can be as simple as a uniform prior on topologies with exponentially-distributed branch lengths, or a
more complex descriptor of demographic history [8].

Bayesian phylogenetic inference is computationally challenging. The corresponding maximum-
likelihood inference problem is known to be NP-hard [9]. These posteriors are difficult to compute
because of the super-exponential number of phylogenetic trees, the intertwined discrete and continu-
ous nature of the space, and the frequent presence of multiple modes [3].

Random-walk Markov chain Monte Carlo (MCMC) is currently the only technique used in practice. In
these algorithms, a tree modification is proposed by cutting off part of the tree and randomly attaching
it to another location, which is then accepted or rejected according to the Metropolis-Hastings ratio.
Because the high-density region of the posterior is focused on a very small subset of the volume
of possible trees, these uninformed tree modifications have low acceptance rates. Once such an
algorithm is run, one uses the sample as an approximation of the phylogenetic posterior distribution.
Practically speaking, important phylogenetic inferences can take a month of compute [10], which
limits the amount of data researchers are willing to input into these algorithms.

3 Parametrized distributions on phylogenetic tree topologies

We can alleviate some of the difficulties of Bayesian phylogenetic inference by developing structured
approximations to phylogenetic posterior distributions. One cannot apply a continuous relaxation of
a discrete embedding [11, 12] because tree space, using natural notions of similarities between trees,
is inherently non-euclidean [13].
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Fig. 1. The conditional clade decomposition (CCD) model for a probability distribution on a phylogenetic tree.

Rather, recent work has developed approximations based on tree decompositions [4–6, 14]. In this
setup, the probability of a rooted tree is approximated as a product of conditional probability terms
concerning the next set of leaves to branch off of given some information about the rest of the tree
(Fig. 1). In the conditional clade probability case [4, 5, 14], one conditions on a group of leaves
forming a clade, or subtree of unspecified structure. This is an approximation because real posterior
distributions need not have conditional independence of tree substructures.
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Fig. 2. Conditioning on a
sister clade for the next split.

Several years later these approaches were generalized to enable more
flexible sets of conditional dependences by formulating the procedure
as inference on a graphical model [6]. In this subsplit Bayesian network
(SBN) formulation, one realizes a phylogenetic tree as a series of sub-
splits, which are bipartitions of subsets of the leaves. If the Bayesian
network has no connections, one recovers the previous CCD model (Fig. 1). If, on the other hand, the
subsplit is conditioned on a “parent” subsplit that it refines, then one obtains something like CCD
but where one also conditions on the sister clade (Fig. 2). However, one could easily add additional
edges to the network to encode more complex dependences, such as on “aunt” clades [6].

Training these distributions qφ given a collection of trees does not pose a substantial challenge. In
simple cases one only has to count up the number of subsplits and normalize in order to get the
maximum-likelihood estimator [5]. To estimate conditional subsplit distributions on unrooted trees,
marginalizing out the position of the root, one uses expectation-maximization [6] in a form that will
be familiar to those accustomed to estimation of graphical models. One can also include conjugate
Dirichlet priors to regularize estimation with no asymptotic additional cost.

Investigation of posteriors from real data shows that the additional flexibility offered by the SBN
model (Fig. 2) is required to accurately capture the shape of posteriors [6]. Furthermore, these models
give better posterior estimates than simply using the frequency of occurrence of the tree in a posterior
sample, which is the only posterior probability estimator used in practice. In fact, on a standard
panel of benchmark data sets [15], this currently-used simple estimator was best only for a very
simple data set with 7 trees in the posterior. One can attribute this performance gain to both the
methods smoothing out Monte Carlo error by using nearby trees and by extending the distribution to
unsampled trees with nonzero posterior mass.

4 Variational Bayes phylogenetic inference
gradient
ascent
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Fig. 3. Variational inference by
stochastic gradient ascent.

Given how well the structured approximations work to cap-
ture complex phylogenetic posteriors, one might wish to forego
random-walk MCMC and instead directly infer a posterior distri-
bution using variational inference (VI). In variational inference,
one posits a variational distribution qφ(z) and fits it to the unknown posterior distribution using
gradient ascent. Specifically, one samples from the current approximation qφ (pink points in Fig. 3)
and uses that sample to take an optimization step on the parameters φ to improve the fit as described
in more detail below. Early in the fitting procedure, this will involve increasing the probability
of generating samples z that had a high un-normalized posterior and decrease the probability of
generating those that did not.

Returning to phylogenetics, the variational distribution is a distribution on phylogenetic trees. To
achieve this full VI procedure, one must complement the variational distribution on tree topologies
(Fig. 1, 2) with a variational distribution on branch lengths. Variational distributions on continu-
ous parameters is a much more classical setting, and previous research has identified families of
distributions useful for modeling phylogenetic branch lengths [16, 17].

However, this previous work was done under the assumption of a fixed phylogenetic tree topology,
whereas a full phylogenetic VI algorithm requires the tree to be dynamically sampled. In principle
one could have one branch length distribution for every branch of every tree, but this would certainly
have too many parameters to infer accurately. On the other hand one could consider each edge
as a bipartition of the leaf set and have only one parameter for each such bipartition. Such a
parameterization runs the risk of being insufficiently flexible, as the distribution of branch lengths for
a given edge may depend on the edges that surround it.

Fig. 4. A
fat quartet.

The optimal solution appears to be to incorporate some local branching structure in the
tree. The strategy of [18] is to use a parameterization in terms of what one might call fat
quartets (Fig. 4): five compatible splits around a single edge. Any edge with the same fat
quartet will have the same variational distribution. In fact, each fat quartet gets broken
up into its primary subsplit pair, of the split given by the edge and the two subsplits on
either side of that edge; each parameter of the variational parameterization for that fat
quartet is the sum of parameters for these three structures individually.

3



Once the variational approximation is established, it remains to devise algorithms to fit it to the (un-
known) posterior distribution. This is typically done by minimizing the Kullback-Liebler divergence
KL(qφ(z) ‖ p(z | D)) of the variational approximation qφ to the posterior distribution. As in other
applications of variational inference, one can avoid problems with the normalizing constant of the
posterior by instead optimizing a related quantity called the ELBO [19], which only differs from the
KL divergence by a constant independent of φ.

One can then use the stochastic gradient of the ELBO for gradient ascent. This requires some care: a
naive approach will have too high of variance to obtain an accurate variational approximation. Thus
[18] uses multi-sample gradient estimators [20, 21]. Putting all of these components together gives a
rapidly-converging algorithm that has low divergence from the ground-truth posterior distribution,
even in a preliminary implementation [18]. Furthermore, one can obtain accurate marginal likelihoods
over trees with a small amount of additional computational effort, a task which classical requires
many runs of MCMC [22, 23].

5 Conclusion and opportunities for future work

The current state-of-the-art for phylogenetic inference lags significantly behind the more sophisticated
algorithms now available for posteriors on continuous parameters [19, 24]. In addition, the discrete
aspect of phylogenetic posterior distributions keeps the phylogenetic community from capitalizing on
the tremendous progress in machine learning frameworks [25, 26] and probabilistic programming
[27–29]. Here we have described how continuously-parameterized variational distributions on
phylogenetic trees can accurately fit phylogenetic posteriors, opening phylogenetic inference to a
whole suite of new approaches and tools. Many opportunities remain.

There are opportunities to improve the core variational inference algorithm. First, although the
SBN parameterization does greatly reduce the number of parameters that are required to specify
a phylogenetic posterior distribution, there are still in principle an exponential number. For this
reason, the existing implementation [18] uses rapid phylogenetic bootstrapping [30] to generate a
collection of trees then uses this collection to define the set of parent-child subsplit pairs that are
used for variational inference. Although this ad-hoc approach works for benchmark data sets, a
more principled approach is desirable. Second, other variational parameterizations of branch length
distributions should be developed and tested.

There are opportunities to improve implementation. The original implementation was in Python,
and although this was enough to establish the viability of the approach, further work is needed to
develop an efficient implementation. On the other hand, Python now boasts a very strong collection
of machine learning and probabilistic programming packages [25–29]. For this reason we are
developing a Python-interface C++ library available at https://github.com/phylovi/libsbn
such that users can formulate interesting parametrized phylogenetic prior distributions in Python, yet
have efficient SBN routines and likelihood calculation using the BEAGLE C++ library [31–33].

The general concept of fitting an approximation to phylogenetic posteriors opens up opportunities for
creative ways of building and using them. While MCMC requires rerunning an analysis from scratch
when anything in the model or data changes, one can use an existing variational starting inference
as a starting point for a slightly different analysis. For example, we are currently pursuing methods
to combine variational inferences on overlapping data subsets in order to get an inference on their
union. This will enable the first divide-and-conquer approach to Bayesian phylogenetics, as well as
online algorithms that add sequences to an existing posterior distribution by combining the previous
variational approximation with one inferred from the new sequence and the sequences in its close
neighborhood.

Finally, in order to obtain both the asymptotic correctness of MCMC and the efficiency of variational
approaches, one can use the variational distribution as a proposal distribution. This returns to the
original objectives of these parameterizations [4]. However, we are going a step further than this
previous work: rather than use the parameterization to guide local modifications, we are using it to
propose entirely new phylogenetic tree structures to obtain an independence sampler. Even a modest
acceptance probability for such a sampler would make it a valuable tool to erase autocorrelation in
phylogenetic MCMC chains.
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