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Introduction 
 

An exciting aspect of the data revolution in biomedical sciences has been the collection of multiple 
data modalities reflecting diverse aspects of entities of interest. For example, multiple aspects of 
proteins, such as amino acid sequences, three-dimensional structures, and protein-protein 
interactions, are used to study their function1-3 and other properties. Several data integration 
strategies have been developed to leverage the inherent diversity and complementarity of these 
modalities to build comprehensive predictive model(s) for properties of biomedical entities4-6. 
However, most of these strategies focus on building uniform integrated representations7, such as 
networks2, 8, 9, kernels10 and tensors11, an approach sometimes referred to as early or intermediate 
integration5, 12. While such uniform integration is expected to reinforce the consensus among the 
modalities, this approach may not be ideal when different classes of prediction methods are 
effective for individual data types, such as deep learning13 for medical images14 and clinical text15, 
XGBoost16 for structured data17, 18 and label propagation for networks19. We refer to dataset- or 
data type-specific models inferred using these types of methods as local models. 
 To better utilize the properties of local models, we 
propose a potentially more effective approach to data 
integration and predictive modeling by assimilating these 
models into heterogenous ensembles20. These 
ensembles can incorporate a large number and variety of 
base predictors, including local models, and can benefit 
from both the consensus and diversity among these 
predictors. Due to these properties, heterogeneous 
ensembles have been effective at improving predictive 
performance for protein function prediction (PFP)20-22, 
DREAM Challenges23, and other applications24-26. 
 Here, we present a novel approach named 
Ensemble-based data Integration (EI) for predictive 
modeling. EI leverages established heterogeneous 
ensemble methods, specifically stacking27 and ensemble 
selection (ES)28, which are generally applied to base 
predictors derived from the same data set20. In the data 
integration scenario, EI uses these methods to aggregate 
local models inferred from different data sets to develop 
an ensemble predictor for the target problem (Figure 1). 
Note that this approach has been referred to as late 
integration in the literature, although we deploy it more 
systematically and at a larger scale than in previous work4-

6. We tested EI’s effectiveness for the challenging problem 
of protein function prediction (PFP)1-3 using diverse networks from the STRING database29, and 
compared its performance with data integration algorithms developed for networks30, 31. 
 

Materials and Methods 
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Figure 1: Overview of the Ensemble 
Integration (EI) approach. One base 
predictor/local model each is trained on 
the individual data sets using ten 
standard classification algorithms, such 
as Support Vector Machine (SVM), 
Logistic Regression (LR) and Decision 
Tree (DT). The predictions generated 
by these base predictors are then 
integrated using heterogeneous 
ensemble methods, such as Ensemble 
Selection developed by Caruana et al 
(CES) and Stacking using eight 
classifiers, as in our previous work22. 



 

Ensemble Integration. Figure 1 shows an overview of the ensemble integration (EI) approach.  
First, we trained one local model each using ten Weka32-based standard binary classification 
algorithms, such as Support Vector Machine (SVM), Logistic Regression (LR) and Decision 
Tree (DT), from base predictor training subsets of each of the individual datasets being 
integrated. We used random under-sampling33 to balance the positive and negative classes 
before training these base predictors. Next, to construct the integrated ensemble, we executed 
a second set of algorithms, namely ES developed by Caruana et al34, 35 and Stacking27, on the 
predictions generated by these local models on separate ensemble training subsets of the 
individual datasets. We used eight standard classification algorithms for Stacking, as in previous 
work22. This whole procedure was conducted within a five-fold nested cross-validation setup 
typically used for heterogeneous ensemble learning (described in detail in ref. 20), which 
reduces adverse effects of overfitting while ensuring fair evaluation of the ensemble methods 
being tested. The source code implementing this EI framework is publicly available36. 
 

Baseline data/predictor integration methods. We compared EI’s performance with those of the 
Mashup30 and deepNF31 early network integration algorithms. Specifically, we tested the same 
ten types of classifiers on the Mashup- and deepNF-integrated versions of the individual networks. 
This baseline’s design enabled a fair comparison with EI, since each approach represent a single 
level of integration, i.e., early versus late, respectively. 

As an alternate baseline, we also tested the integration of base predictors inferred from 
individual datasets into dataset-specific heterogeneous ensembles22. This baseline enabled us to 
compare the above data integration strategies with the individual datasets being integrated. 

In both the above baselines, as in EI, random under-sampling33 was applied to balance 
the positive and negative classes before training the base/individual predictors. 
 

Experimental data. We tested all the above integration approaches for PFP, specifically GO term 
annotation prediction1-3 from six human STRING datasets/networks29. These included protein-
protein interactions (PPI), interactions in curated databases, co-expression networks, and 
genomic neighborhood, co-occurrence and fusion interactions. For consistency, these datasets 
were exactly the same as those used to evaluate Mashup30 and deepNF31 in their respective 
publications. For all the datasets, both individual and integrated, we used each protein’s 
adjacency vector as its feature values vector for training and evaluating predictive models. This 
feature encoding has recently been shown to be effective for network-based gene classification37. 
 Our PFP experiments focused on 112 GO Molecular Function and Biology Process terms 
that were assigned to at least a thousand human genes each in September 2017 with a non-IEA 
evidence code. For each GO term, we defined proteins annotated to it as positive examples, and 
any that were neither annotated to the term, nor its ancestors or descendants, as negative 
examples38. For each term, only proteins that were either positive or negative examples were 
used in all the experiments. If any of these proteins were not covered by an individual data set, 
the protein was assigned a corresponding feature vector consisting of all zeros. 
 We also calculated specific properties of the GO terms considered using the GOATOOLS 
package (version 0.8.4)39. The depth of term t was defined as the length of the shortest path from 
the root of the corresponding ontology to t, while its information content (IC) is defined as -
log10(p(t)), where p(t) is the probability of a human protein being annotated with t. 
 

Evaluation methodology. In all our assessments, we used the recommended Fmax evaluation 
measure40, i.e., the maximum value of the F-measure across all prediction score thresholds. For 
each GO term, we compared the representative predictors in the following three categories: 

• The heterogeneous ensemble algorithm yielding the best-performing EI predictor. 
• The best-performing base predictor on the Mashup- and deepNF-integrated datasets. 
• The best-performing heterogeneous ensemble algorithm on each individual dataset. 



 

 

This methodology enables a fair comparison among the representative predictors of the EI and 
baseline approaches. Finally, we statistically compared the performances of these approaches 
across all the GO terms tested using the recommended Friedman and Nemenyi tests41. 
 

Results 
 

Figure 2 shows the distributions of the Fmax scores obtained by the best implementations of the 
different integration approaches for the each of GO terms tested. EI achieved the highest median 
Fmax score overall. It significantly outperformed the best individual predictors on the integrated 
Mashup (p=1.55x10-15) and deepNF (p=2.12x10-12) networks, as well the best-performing 
heterogeneous ensembles on every individual dataset (p≤9.14x10-8). This improvement is likely 
due to the ability of EI to encapsulate local information in the individual datasets into the most 
effective base predictors before their assimilation into heterogeneous ensembles. It is also 
notable that the heterogeneous ensembles on the individual PPI datasets performed slightly 
better than predictors from the Mashup and deepNF networks (p=0.008 and 0.092, respectively), 
reaffirming the utility of these ensembles for predictive modeling. 

It is well-known that the performance of PFP algorithms can vary substantially across GO 
terms depending on their information content (IC) (inversely related to its size, i.e., the number of 
proteins annotated to a term) and depth in the respective GO hierarchy (specificity of the term)40, 

42. Thus, we also compared EI, deepNF and Mashup, the main data integration strategies 
evaluated in this study, with regard to how their performance varied with these properties of GO 
terms. In terms of both these properties, EI consistently performed better than both deepNF and 
Mashup at increasing depths (Figure 3(A)) and levels of IC (Figure 3(B)). These trends indicate 

Figure 2: Comparison of the distributions of prediction performances, measured in terms of Fmax values, of the 
various data integration approaches, as well as six individual STRING datasets/networks, when predicting 
annotations to 112 GO Molecular Function and Biology Process terms. Shown here are the best-performing 
Ensemble Integration (EI) algorithms tested, the best-performing individual predictors (the same ones used in the 
first layer of EI (Figure 1)) after early network integration using the deepNF and Mashup algorithms, and the best-
performing heterogeneous ensembles (the same ones used in the second layer of EI (Figure 1)) on the individual 
datasets. The best-performing implementations of each approach were identified for each GO term separately. 



that EI can perform well even for GO terms that are deeper or have fewer annotated genes than 
terms near the root of the hierarchy. This is again likely due to its ability to capture and aggregate 
information local to individual datasets, which is not enabled sufficiently by early integration. 
 

Discussion 
 

Here, we proposed a novel approach to late data integration for predictive modeling, namely 
Ensemble Integration (EI), where local models derived from individual datasets are integrated into 
heterogeneous ensembles to develop predictive models. Through the problem of protein function 
prediction, we demonstrated that EI performs better than early or no data integration approaches.  

This proof of principle study has limitations, which offer several avenues for future work. 
Foremost, our assessments only included a relatively small number of GO terms with at least a 
thousand human genes annotated to each of them. Developing EI methods for more specific GO 
terms and other sparse labels, which have many fewer positive examples, is an important 
challenge. Moreover, even though the individual STRING datasets considered in this study were 
natively structured as networks, we used their adjacency matrices as sources of feature vectors 
for traditional classification algorithms such as SVM, LR and DT. Although this feature-based 
representation has been recently shown to be more effective for (gene) classification37, this 
assessment may need to be re-evaluated in the context of network integration. Additionally, in the 
current implementation of EI, we assigned all-zero feature vectors to proteins disconnected from 
an individual network. In future work, it will be important to investigate other strategies for handling 
such missing values. It is also important to repeat our assessments for different subsets of 
individual STRING networks and GO evidence codes to eliminate non-obvious circularities 
between the two data sources. Finally, it will also be useful to study the mathematical properties 
of EI that led to its improved performance over other data integration algorithms in our 
experiments, as well as the methodologies to interpret the ensembles EI yields. 
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Figure 3: Variation of performance of our EI approach, as well as the deepNF and Mashup algorithms, in terms 
of (A) the depth and (B) information content (discretized into equally sized bins covering 22 or 23 terms each) of 
the 112 GO terms tested in this work. The number of GO terms falling under each depth is shown below the 
corresponding value in (A). Both depth and information content were calculated using the GOATOOLS package 
(version 0.8.4). In terms of both these properties, EI consistently performs better than deepNF and Mashup. 
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