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Abstract
Despite deep neural networks (DNNs) having
found great success at improving performance
on various computational genomics tasks, it re-
mains difficult to understand why they make their
predictions. The main approaches to interpret a
high-performing DNN are to visualize learned
representations via weight visualizations and at-
tribution methods. While these approaches can be
informative, they cannot uncover population-level
effect sizes of features and their interactions in a
quantitative manner. Here we discuss and argue
for global interpretability methods that can quan-
tify the importance of putative features learned
by a DNN. We highlight recent work that have
benefited from this approach and then discuss con-
nections between global importance and causality.

Overview
Deep neural networks (DNNs) have demonstrated improved
performance in many computational biology tasks (Zhou &
Troyanskaya, 2015; Alipanahi et al., 2015; Zeng et al., 2016;
Eraslan et al., 2019; Hiranuma et al., 2017; Angermueller
et al., 2017; Kelley et al., 2016). Despite their promise, the
main drawback of DNNs is the difficulty in understanding
why they make any given prediction. Treated as a black
box, it is challenging to decipher whether improved pre-
dictions result from learning novel biological features not
captured by previous methods or by gaining an advantage
through discriminating correlated features that are indirectly
related, such as technical biases of an experiment. Models
that exploit the latter may not necessarily generalize well,
especially across datasets generated by different protocols,
laboratories, or sequencing technologies.

Currently, the main approach to interpret a convolutional
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neural network (CNN) is to visualize learned representa-
tions in the input space. In genomics, such methods include
visualizing the convolutional filters (Alipanahi et al., 2015;
Kelley et al., 2016; Quang & Xie, 2016; Angermueller et al.,
2016; Cuperus et al., 2017; Chen et al., 2018; Ben-Bassat
et al., 2018; Wang et al., 2018), attribution methods (Ali-
panahi et al., 2015; Zhou & Troyanskaya, 2015; Kelley et al.,
2016; Shrikumar et al., 2017; Lundberg & Lee, 2017; Ghan-
bari & Ohler, 2019), and more recently in silico experiments
(Koo et al., 2018; Avsec et al., 2019). These approaches can
be grouped into local and global interpretability methods.
Local interpretability methods provide sample-level feature
importance, that is for individual sequences, while global
interpretability methods describe population-level feature
importance. Here, we give a brief overview of local and
global interpretability methods and then argue for the latter.
We highlight two applications where global interpretability
of a high-performing DNN has provided a more in-depth
understanding of the underlying biology.

Local interpretability
In genomics, attribution methods – such as in silico mutage-
nesis (Alipanahi et al., 2015; Zhou & Troyanskaya, 2015;
Kelley et al., 2016), gradients, i.e. saliency (Simonyan et al.,
2013), integrated gradients (Sundararajan et al., 2017), and
Deeplift (Shrikumar et al., 2017) – provide a nucleotide-
resolution map consisting of an importance score for each
nucleotide variant at each position. There are many other
interpretability methods that have not been thoroughly ex-
plored in regulatory genomics applications, including decon-
volutions (Zeiler & Fergus, 2014), GRADCAM (Selvaraju
et al., 2017), SHAP (Lundberg & Lee, 2017), and LIME
(Ribeiro et al., 2016), among many others not cited here.
The main benefit of attribution methods is that they provide
importance scores related to decisions, thus considering the
entire DNN.

In practice, many applications have utilized attribution meth-
ods to validate that their model learned meaningful biol-
ogy. For example, gradients (from predictions to the inputs)
have been employed to reveal known transcription factor
(TF) binding sites when trained to predict the profiles from
high-throughput sequencing datasets (Kelley et al., 2018).
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Integrated gradients were used to uncover motifs for RNA-
protein interactions (Ghanbari & Ohler, 2019). Recently,
DeepLift was used to uncover known and novel TF binding
sites, including their syntax with respect to other binding
sites (Avsec et al., 2019). In silico mutagenesis - the gold
standard for local interpretability in genomics - has been
shown to uncover known motifs related to TF binding and
chromatin accessibility (Alipanahi et al., 2015; Zhou &
Troyanskaya, 2015; Kelley et al., 2016). Collectively these
approaches have been useful to validate DNN predictions
for known disease-associated variants, albeit on an anecdo-
tal basis. More recently, local interpretability has helped
to understand the role of noncoding mutations in autism
spectrum disorder and to prioritize high-impact mutations
for further study (Zhou et al., 2019).

Global interpretability
Although attribution methods can be informative, their main
drawback is that they may only be applied locally to individ-
ual sequences. However, putative patterns that are identified
may be influenced by other factors in that sequence, such
as the 3D structure of the sequence or interactions with
other proteins. It remains difficult to disentangle whether
attribution scores are noisy due to an artifact of the attribu-
tion method itself or a consequence of poor representations
learned by the DNN.

To convert sample-level representations captured locally
in attribution maps into global representations at the
population-level, TF-MoDISco splits attribution maps into
smaller segments about learned patterns called seqlets, clus-
ters the seqlets and finds averaged representations, which
reduces noise from any individual seqlet (Shrikumar et al.,
2018). Alternatively, a simpler approach to uncover global
representations of features can be achieved by visualizing
first layer convolutional filters. This can be accomplished
by directly plotting their weights or via activation-based
sequence alignments, which are converted to a position fre-
quency matrix. Recent advances have made it possible to in-
tentionally design CNNs to learn more human-interpretable
sequence patterns in convolutional filters. This includes
design principles of spatial information flow through the
network and highly divergent activation functions (Koo &
Eddy, 2018; Koo & Ploenzke, 2019). In parallel, advances
have been developed to make direct visualization more in-
terpretable (Ploenzke & Irizarry, 2018).

Visualizing convolutional filters has the benefit of reveal-
ing global sequence features. However, any information
about interactions between first layer filters is captured in
the deeper layers. For CNNs that employ pooling, deeper
layers cannot be visualized by the standard alignment-based
methods used to visualize first layer filters because spatial
information of filter activations is lost in each pooling opera-

tion. Moreover, there is no correspondence of these features
to model decision making (the output layer) and the impor-
tance of a given filter cannot be easily quantified because
of its inter-dependence with other filters throughout deeper
layers. TF-MoDISco uses attribution maps, so it should, in
principle, provide class-specific representations. Neverthe-
less, attribution methods are highly susceptible to the prop-
erties of the fitted function, which does not necessarily go
hand-in-hand with a network’s generalization performance
(Tsipras et al., 2018; Alvarez-Melis & Jaakkola, 2018; Koo
et al., 2019). In short, there are no guarantees that attribution
maps can provide biologically meaningful representations
even with a state-of-the-art DNN.

Global importance analysis: a quantitative approach.
In practice, interpretability methods are mainly used to
demonstrate that a DNN has learned representations that
match previously known motifs, serving as validation for its
performance. While attribution methods provide a quantita-
tive importance score for individual nucleotide variants, they
do not provide the statistical importance of the motif. To
quantitatively uncover the global importance of a putative
feature, like a motif, we would ideally average the model
predictions over a corpus of sequences which contain the
putative feature under investigation, while also randomizing
the other positions such that background noise and extrane-
ous confounding signals may be allayed. Mathematically,
this is expressed as:

Importance(global) = E[y|xi = pattern)]− E[y|x] , (1)

where E is an expectation, y are the network predictions for
input sequences x, and xi represents the input sequences
with the studied pattern embedded at the ith position. Equa-
tion 1 quantifies the effect size of a feature embedded at a
specific position by marginalizing out the contributions of
the other positions that may exist in individual sequences.

Important to this approach is the randomization of all other
positions. Since the necessary sequences to calculate Eq. 1
may not exist in a given dataset, one solution is to generate
synthetic sequences. Such a procedure requires selection of
an appropriate sequence model to minimize any covariate
shift between the synthetic sequences and the experimen-
tal data. One approach can be to generate randomized se-
quences from a profile based on a site-independent sequence
model. Here, one would expect that the profile captures all
position-dependent biases that are present across the entire
experimental dataset but not any position-independent pat-
terns, like motifs. Alternative null models include random
shuffling and dinucleotide shuffling of the real sequences in
the dataset, then subsampling those for tractability. If there
exists high-order dependencies in the observed sequences,
such as RNA secondary structure or motif interactions, or
if background features do not have a strict positional de-
pendence, covariate shift may arise between the null model
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and data distribution, which can easily lead to misleading
results. In genomics, prior knowledge can help design a
suitable null sequence model. On the other hand, in fields
like natural language processing and computer vision, it is
not straightforward to systematically synthesize data. Thus,
the applicability of global importance analysis in these other
fields is currently limited.

Occluding regions or patches in the data is a powerful
method to discover important features in images (Zeiler
& Fergus, 2014). In genomics, removing portions of the
sequence may lead to erratic model predictions as it corre-
sponds to a data space that the network was never trained
on. One solution is to replace occluded regions with random
sequences. This of course has to be done in a statistical
manner to mitigate noise that may arise by chance. Higher-
order interactions between proteins and their spacings can
also be uncovered by embedding two (or more) candidate
motifs in null model sequences and varying their spacing.
Exchanging candidate motifs with other motifs that should
not interact can provide information about whether a model
has learned cooperative interactions (Avsec et al., 2019).

Beyond validation - discovering new biology
To the authors knowledge, work by (Koo et al., 2018) was
the first demonstration of global importance analysis to
interpret a DNN in genomics. They employed global im-
portance analysis to show that their DNN, called Residu-
alBind, trained to infer sequence-structure preferences of
RNA binding proteins (RBPs), learned not only the under-
lying sequence motifs, but also based predictions on the
number of motifs, their spacing, and secondary structure
context. At the time, other DNNs had been applied to the
same RNAcompete dataset (Ray et al., 2013), including
Deepbind (Alipanahi et al., 2015), DeeperBind (Hassan-
zadeh & Wang, 2016), DLPRB (Ben-Bassat et al., 2018),
and cDeepbind (Gandhi et al., 2018). Each method bench-
marked their performance on held out test data from RNA-
compete and also on in vitro-to-in vivo generalization tasks.
For interpretability, Deepbind and DLPRB demonstrated
that a few first layer convolutional filters learn represen-
tations that represent known RBP motifs. Deepbind and
cDeepbind performed in silico mutagenesis anecdotally on
a few sequences to show that their models learn representa-
tions that resemble known RBP motifs.

On the other hand, to interpret ResidualBind, the authors
initially used first-order in silico mutagenesis to show that
canonical motifs are learned. But this in itself does not
explain ResidualBind’s improved performance because pre-
vious methods also found a similar learned motif representa-
tion. By performing in silico mutagenesis on a ResidualBind
model trained on the RNAcompete dataset for RBFOX1,
which has an experimentally validated motif UGCAUG,

they were only able to generate hypotheses that Residual-
Bind is learning to count the number of motifs, consider
spacing between the motifs and their positions along the
RNA probes. Using global importance analysis, they de-
signed in silico experiments to test each hypothesis. For
instance, they systematically varied the number of canoni-
cal RBFOX1 binding sites in synthetic sequences to verify
that it integrates the presence of multiple binding sites in
a given sequence with an additive model. They also var-
ied the spacing between two RBFOX1 motifs in synthetic
sequences to show that ResidualBind’s predictions are con-
sistent with a biophysical intuition of steric hindrance. They
also interpreted a ResidualBind model trained on an RNA-
compete dataset for VTS1, which has a sequence preference
GCUGG in the context of a hairpin loop. Using in silico
mutagenesis, they found that the VTS1 motif was important
for the network, but there were many other nucleotides that
also had significant importance. These noisy positions were
presumably features related to RNA secondary structure.
To test this, they performed global importance analysis by
designing syntethic sequences that embed the VTS1 motif
in the loop of a hairpin structure and the stem. Indeed the
VTS1 motif in the hairpin loop had a statistically significant
effect size. As a control, they embedded the VTS1 motif at
similar positions in random sequences. These sets of experi-
ments support that ResidualBind has learned both positive
and negative contributions of RNA structure context directly
from the sequence despite never explicitly being trained to
do so. Further, global importance analysis revealed that
ResidualBind has learned a significant 3’ GC-bias for a
subset of RBPs in the RNAcompete dataset.

Another demonstration of global importance analysis was
in a recent study by (Avsec et al., 2019). They trained their
DNN, called BPNet, to predict ChIP-nexus binding profiles.
To interpret their model, they first employed Deeplift, a local
interpretability method, to quantify the contribution of each
base pair in an input sequence. To summarize recurring
patterns, they employed a global interpretability method,
TF-MoDISco, to cluster seqlets of Deeplift scores into motif
representations called contribution weight matrices. They
found 51 motifs, but focused on a subset of 11 TF binding
motifs for further analysis, including the Oct4-Sox2, Sox2,
and Klf4 motifs. They then performed global importance
analysis to study properties of the learned motifs. Specifi-
cally, they designed in silico experiments where they embed
two TF motifs in synthetic sequences and systematically
vary their separation. They found the Nanog motif was
strongly enhanced by the presence of another Nanog motif
nearby. Similar findings were noted for the Sox2 motif.
Interestingly, they found directionality in the enhancement
of Nanog and Sox2 binding. They also performed occlusion
experiments by removing motifs from real sequences and
replacing them with random sequences. They found that
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Nanog motif instances exhibit a 10.5 basepair periodicity
which corresponds to the helix property of DNA.

Together, these examples demonstrate the potential for inter-
preting high-performing models beyond local interpretabil-
ity. Follow up global interpretability analysis can highlight
patterns that are shared across the dataset, elucidating bet-
ter representations that the model has learned, the specific
function it has fit, and ultimately deeper insight into the
underlying biology.

Connection to causal inference
Recently, attribution methods for deep neural networks have
been recast in a causal inference framework (Chattopadhyay
et al., 2019). In this context, current attribution methods that
are conditioned on a single data example are identifiable
as a special instance of an individual causal effect (ICE).
For a given data sample, x ∈ {xi}Li=1 – where xi is the ith
feature and L is the number of input features – the individ-
ual causal effect of setting the ith feature to a value α is
estimated by: ICEdo(xi=α)(x) = yxi=α(x)− y(x) , where
yxi=α(x) denotes the output y of a DNN when setting xi
to a value α and y(x) represents the DNN output for the
unperturbed data sample. Setting a specific input feature
to a value α is called an intervention and is represented
with the do operation. Thus ICE estimates the effect size
of a intervention to the ith feature for a given data sample.
Employing an intervention with a small perturbation to a
nucleotide variant is proportional to calculating the partial
derivative with respect to the input, while intervening at the
position level is similar to in silico mutagenesis. System-
atically calculating ICE separately for each input feature
generates an attribution map for a single data sample.

The causal effect of features identified by ICE are local to
an individual data sample and hence may not necessarily
generalize to the population level due to unaccounted for
feature interactions (endogenous confounders). To address
this limitation, the average causal effect (ACE) calculates a
feature’s causal effect globally (Pearl, 2009), according to:

ACEdo(xi=α) = E[yxi=α(x)]− E[y(x)] (2)

where E[·] is an expectation. For input data consisting of
images, which are by nature high-dimensional continuous
random variables, ACE requires approximations to make
the expectation tractable (Chattopadhyay et al., 2019).

In genomics, the causal effect of a specific sequence pat-
tern with respect to a given molecular phenotype, such as
protein binding, can be estimated by physically designing
sequences with a fixed, known pattern (intervention) and
randomizing the both the intervention assignment and the
other positions within the sequences. This process ensures
ignorability of treatment assignment and a common support

between treated and untreated, allowing for valid statisti-
cal inference of the causal effect. Equation 2 can thus be
calculated directly with sequencing protocols. In practice,
this approach can be time consuming and costly due to the
large number of sequences and experiments required to cal-
culate Eq. 2. Alternatively, a well-trained neural network
may be used as a proxy for these “causal” experiments,
generating experimental predictions for the necessary se-
quences, which then makes it possible to estimate Eq. 2.
Indeed this is precisely what global importance analysis is
doing. Nevertheless, global importance analysis is based on
a model’s predictions and hence should only be used as a
model interpretability tool. If a model fits a noisy function,
i.e. memorizing noise, then both ICE and ACE will reflect
this. Interpreting model predictions can only suggest biolog-
ical insights and help researchers to develop hypotheses; the
patterns they learn are not proof of biological mechanisms.
Any new insights made by interpreting a DNN should be
followed up with experiments for validation.

Future outlook
Global importance analysis is most effective when synthetic
sequences are specially crafted to answer specific questions.
However, this approach may fail to highlight important fea-
tures in the data which are not known a priori. To generate
data-driven hypotheses, first-order and second-order attribu-
tion methods can be employed to find local features impor-
tant for individual sequences. Because attribution maps are,
in general, quite noisy, it may be beneficial to train a CNN
that is designed to learn more interpretable representations
in first convolutional layer filters and visualize those filters
(Koo & Eddy, 2018). It turns out that CNNs designed to
learn interpretable filters also yield more reliable representa-
tions with attribution methods (Koo et al., 2019). Clustering
attribution maps with TF-MoDISco may provide another
line of evidence for the importance of learned representa-
tions (Shrikumar et al., 2018). As a follow up, the effect
size of putative features can be quantified with global im-
portance analysis using in silico experiments. This can be
utilized to tease out specific functional relationships learned
by the network, including positional dependence, sequence
context, and higher-order interactions.

Interpretability provides insight into what a model learns,
not how data are generated, and models may miss important
properties of features that exist in the data. As powerful
function approximators, neural networks can be employed
to challenge our underlying assumptions made by current
models. Through careful downstream interpretation of a
high-performing DNN, we can identify what novel features
drive the performance gains and thus help inform the design
of state-of-the-art models, ultimately helping to elucidate the
biological signals in high-throughput sequencing datasets.
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