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In single-cell RNA sequencing (scRNA-seq) data, some
genes have more zero measurements than can be mod-
eled by a unimodal distribution centered at the mean ex-
pression level [1]. These zeros may be due to technical
factors such as limited capture efficiency and sequenc-
ing depth, particularly for non-UMI protocols [2] and for
infrequently expressed genes [1]. Zeros may also result
from biological factors such as stochasticity inherent to
the process of transcription (i.e, bursting) [3] or more
stable differences between the milieus of genes that are
present in different cell states.

Zero-inflated models are therefore commonly used for an-
alyzing these data [1]. A first notable example is ZIFA [4],
which uses a zero-inflated factor analysis to model the log-
normalized data. ZINB-WaVE [5] and scVI [6] instead
both rely on a zero-inflated negative binomial (ZINB)
distribution to model the observed counts. Under the
ZINB distribution, zeros can be attributed to either the
limited sampling effects (NB) or to “surprising” zeros
(ZI) which are not accounted for by NB. Indeed, it has
previously demonstrated that under the scVI model, ze-
ros attributable to the NB component better reflect the
limitation in mRNA capture efficiency whereas the ZI
component has a stronger association with the extent of
read alignment errors [6].

A recent study [7] however questioned the universality of
zero-inflation added to NB models for scRNA-seq data.
This analysis was primarily based on datasets of "nega-
tive controls" (e.g., ERCC spike-ins) – namely exogenous
transcripts that are constitutively expressed, thus reducing
the contribution of biological factors as a cause for zero
measurements. While the author found these negative
controls to be adequately modeled by a NB with no zero-
inflation, the question remains of whether this is also the
case for cell-endogenous transcripts, and whether in such
cases zero-inflation is a property specific only to a subset
of the genes (e.g., due to their promoter kinetics [8]).

We address these questions by proposing a gene-specific
treatment of zero-inflation. We present AutoZI, a novel
generative model for scRNA-seq data which employs a
spike-and-slab prior [9, 10] on a zero-inflation mixture
assignment for every gene (Section 1). We propose a
tractable inference procedure for AutoZI using variational
methods (Section 2). A Bayesian decision rule based on

AutoZI’s variational distribution gives a decision bound-
ary between inferred ZINB and NB genes (Section 3). On
simulated datasets, AutoZI outperforms other approaches
in identifying zero-inflation (Section 4). On real datasets,
AutoZI labels as zero-inflated only a small fraction of
the negative controls (spike ins and control RNAs) while
doing so for larger fractions of the endogenous genes,
although this fraction tends to decrease with technical
improvements in library preparation protocols (Section 5).
In an application of AutoZI to mouse embryonic stem
cells (mESC), we find that it is capable of distinguish-
ing genes with a likely bursty promoter kinetics, labeling
them as ZI. Such results suggest that : (i) negative bino-
mial may not be globally appropriate for scRNA-seq data
and that zero-inflation might be required to ensure a good
fit for a significant fraction of the genes, and (ii) the pat-
terns of genes detected as zero-inflated may be interpreted
from both biological and technical perspectives.

1 The AutoZI probabilistic model

For each gene g, latent variable δg ∼ Beta(α, β) in-
dicates the probability of the absence of zero-inflation
shared across all cells. Priors α and β are set to 0.5 to
enforce sparsity while keeping symmetry. Latent variable
mg ∼ Bernoulli(δg) dictates whether gene g has its zero-
inflation parameter sampled from the slab component
(used for representing zero-inflation) or the spike compo-
nent (otherwise) [9, 10]. For each cell n, let latent variable
zn ∼ N (0, I) be a low-dimensional random vector de-
scribing the cell’s biology, as in [6]. Let latent variable
ln ∼ LogNormal(lµ, l2σ) be a random scaling factor rep-
resenting sequencing depth. For each gene g in each cell
n, let latent variable πslab

ng | zn ∼ p(. | ψslab
g , zn) where

ψslab
g are parameters be a zero-inflation rate taking value

in a set of non-negligible values (the “slab” component).
Similarly, latent variable πspike

ng | zn ∼ p(. | ψspike
g , zn)

defines a zero-inflation rate taking value in a set of negli-
gible values (the “spike”). Latent variable

πng = (1−mg)π
slab
ng +mgπ

spike
ng

represents the effective zero-inflation rate. Finally, ob-
served gene expression level xng is defined by

xng|zn, ln,mg ∼ ZINB(lnwg(zn), θg, πng),



where w is a neural network taking value in the sim-
plex (as in [6]) and θg are inverse-dispersion parameters
learned via maximum likelihood.

In AutoZI, we define the spike and the slab by

p(πspike
ng | ψspike

g , zn) = δ{0}

p(πslab
ng | ψslab

g , zn) = δ{hg(zn)},

where δ{x} denotes the Dirac distribution on x and h
is a neural network taking values on the hypercube
[τdropout, 1]G. 0 < τdropout < 1 is used to lower bound
the range of zero-inflation rates that can be accounted
for by our model. Such a parameter avoids the possibil-
ity of having a nested mixture for the distribution πng
(which happens for h = 0 and makes decision-making
ill-defined). Without this constraint on the output of the
neural network, we recover scVI if and only if the param-
eters δg are all equal to 0. AutoZI is yet another example
of trade-off between interpretability and performance. In-
deed, AutoZI is less flexible than scVI since it cannot
attribute values to πng in the interval (0, τdropout) but
more interpretable since it provides a clear decision for
gene-specific zero-inflation.

2 Variational inference

The marginal probability of the data p(x) is intractable.
Therefore, we proceed to posterior approximation with
variational inference in order to learn the model’s param-
eters. To approximate the posterior distribution, we first
marginalize out the discrete random variables (mg)g∈G,
as in collapsed variational inference. Each of the con-
ditional distribution p(xng | zn, ln, δ) is a mixture of
ZINB and NB distributions (with an identical NB com-
ponent) with weight δg. This makes the log-density
p(xng | zn, ln, δ) tractable and differentiable with respect
to the model’s parameters.

We approximate the posterior distribution of each
{δg, zn, ln}n∈N,g∈G with a mean-field variational distri-
bution:

q̄ = ΠG
g=1q(δg)Π

N
n=1q(zn | xn)q(ln | xn)

As in auto-encoding variational Bayes [11], each q(zn |
xn) follows a Gaussian distribution with a diagonal co-
variance matrix. Similarly, q(ln | xn) follows a log-
normal distribution. Parameters of these variational dis-
tribution are encoded via neural networks. For the global
latent variables δg , we use

q(δg) = Beta(αg, βg),

where each αg and βg are global parameters, numeri-
cally restricted to take values in (0, 1). We optimize the
evidence lower bound (ELBO), derived as

Eq̄
N∑
n=1

log
p(xn, zn, ln | δ)
q(zn, ln | xn)

−KL[q(δ)||p(δ))].

This objective function is amenable to stochastic optimiza-
tion (as in [11]), which allows us to sample a fixed number
of cells at each iteration [6] as well as from the variational
distribution using the reparameterization trick [11] and its
generalization to Beta distributions [12].

3 Detecting zero-inflation using Bayesian
decision theory

Once the model fitted to data using the variational distribu-
tion we have at our disposal the variational posterior q(δg)
for each gene g. Our goal is to decide from this whether
gene g is zero-inflated or not using discrete Bayesian de-
cision theory [13]. LetMg

ZINB be the model for which
g is zero-inflated. Similarly, letMg

NB be the model for
which g is not zero-inflated. Defining such hypotheses in
scVI is not straightforward, especially at the gene-specific
level. We can however rely on the latent variable δg of
AutoZI to define formally zero-inflation by

Mg
ZINB : δg < 0.5 and Mg

NB : δg >= 0.5.

Let KNB and KZINB be the costs of taking an inappropri-
ate decision for an individual gene. We decideMg

ZINB
if and only if q(δg < 0.5) > KZINB/KNB+KZINB. We
note that this decision rule is approximate in the sense
that we have only access to a variational approximation
to the posterior. We focus in this paper on the case
KNB = KZINB = 1 for symmetry purposes. Under this
particular setting and because α = β, our decision rule
becomes equivalent to the Bayes factor ofMg

NB against
Mg

ZINB (a classical tool of Bayesian decision theory used
in scVI [6] for differential expression).

4 Performance benchmarks on simulated
datasets

We chose τdropout = 0.01 in all our experiments, as this
value brought stable and balanced results on simulated
datasets. As a consequence of AutoZI’s lower flexibil-
ity, we usually observed lower marginal log-likelihoods
for AutoZI than for scVI. In this manuscript, we there-
fore focus on the performance of AutoZI at detecting
zero-inflated genes. The ground truth for zero-inflation
is unknown and not available for real datasets. Indeed,
this is an open research topic. Consequently, we turned to
simulations using Poisson log-normal distributions with
added zero-inflation as well as Symsim [8], a realistic
simulator for scRNA-seq data relying on Beta-Poisson
distributions.

For both simulation frameworks, we benchmarked Au-
toZI against two decision rules based on maximum likeli-
hood estimations: Uni-MLE-Pi and Uni-MLE-LRT. The
former fits a univariate ZINB distribution to all genes
and uses the fitted zero-inflation weight based on an ar-
bitrary threshold to make a decision. The latter fits both
a univariate ZINB and NB distribution and uses the dif-
ferences in marginal likelihood ∆ = LLZINB − LLNB to
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perform decision. Examples of thresholds include AIC
(resp. BIC) for selecting ZINB if and only if ∆ ≥ 1 (resp.
∆ ≥ log(N)/2, where N is the size of the dataset). For
AutoZI, we used the default hyperparameters from the
scVI model and used the natural decision threshold at 0.5,
denoted as “AutoZI default”.

Poisson log-normal datasets Each synthetic dataset
contains 12,000 cells, 50 genes, and two cell types.
Each cell has its gene expression drawn from a Pois-
son log-normal distribution whose mean and covariance
matrix depend only on the cell type. A fraction λ of the
genes are selected uniformly to be applied a Bernoulli
mask with probability 0.1. We aggregate the results for
λ ∈ {0, 0.25, 0.5, 0.75, 1} and report the ROC curves in
Figure 1.

Figure 1: ROC curves on the aggregated Poisson log-
normal dataset, with points corresponding to the default
AutoZI decision rule, AIC and BIC.

The AutoZI model has a near-one AUC and
Uni-MLE-LRT has a similar albeit slightly lower per-
formance. In particular, AutoZI’s default decision rule
leads to true positive (ZINB) and negative (NB) rates
both superior to 94% whereas the AIC and the BIC do not
yield false positives but their true positive rate is lower
(85.5%), showing a bias in favor of the NB distribution.
The Uni-MLE-Pi baseline procedure performs worse
than these two models.

Beta-Poisson datasets For a more biologically relevant
simulation framework, we used known kinetic models
of stochastic gene expression such as the Beta-Poisson
model. SymSim [8] provides a natural way of sampling
data from such models and adding technical noise. Sym-
Sim first randomly samples the promoter on rate (kon), off
rate (koff) and synthesis rate (s) for each gene, and then
generates simulated “true” counts using a Beta-Poisson
distribution. As a simplification, we label the genes with
kinetic parameters kon, koff < 1 as bimodal, kon > 1 as
unimodal with a non-zero mode (UNZ) and the rest as
unimodal zero (UZ). The real regimes might depend addi-
tionally on s and kon/koff but are negligible as a first analy-
sis. True counts are then converted to observed counts by
simulating processes such as capture, amplification and
fragmentation (with UMIs in these datasets). We create a
dataset of 100 genes with a bimodal distribution and an-
other dataset of 100 genes with a UNZ distribution. Both
datasets are subsampled multiple times (n bimodal genes

and 100 − n UNZ genes, for n ∈ {0, 25, 50, 75, 100})
to create a sequence of datasets of 100 genes and 3,000
cells from a single cell type. We expect UNZ genes to
be non zero-inflated, as these can be easily modeled by
a NB distribution. Conversely, we expect genes that are
bimodal in their true counts to be zero-inflated in their
observed counts, due to limited sensitivity. For simplicity,
we did not focus on UZ genes since their ground-truth
category is not clear. We aggregate the results and report
the ROC curves in Figure 2.

Figure 2: ROC curves on the aggregated SymSim dataset,
with points corresponding to the default AutoZI decision
rule, AIC and BIC.

AutoZI has the best area under the curve and its default
decision rule classifies more than 96% of bimodal genes
as ZINB and more than 99% of the UNZ genes as NB.
Such results show that zero-inflation in our model might
be suited to distinguish regimes of bimodality for kinetics
of gene expression. Conversely, the Uni-MLE-LRT base-
line hardly distinguishes the bimodal and UNZ regimes.
In particular, both AIC and BIC are biased towards ZINB
predictions, and thus poorly suited for zero-inflation anal-
ysis of real data.

Robustness for lowly-expressed genes An important
consideration is the robustness of AutoZI’s performance
for lowly expressed genes. Using Poisson-log-normal
datasets with average expressions spanning from 10−4

to 102, we found that AutoZI’s decisions became biased
towards ZINB for genes with low average expression or,
equivalently, average predicted negative binomial mean:
notably, 92.7 (resp. 2.4%) of NB genes with average ex-
pressions above (resp. below) 1 were correctly retrieved.
Such results suggest that the statistical problem of detect-
ing zero-inflation becomes harder for low values of the
negative binomial mean. Hence, for the following bio-
logical datasets, we train AutoZI on all genes but study
its predictions only for those with average expression
above 1.

5 Application to detecting zero-inflation in
real datasets

A significant application is to investigate how zero-
inflation affects real datasets and whether the decisions
taken by AutoZI have a biological meaning.
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Svensson et al. (1) [14] Svensson et al. (2) [14] Klein et al. [15] Zheng et al. [16]

ERCC 0.0 8.3 0.0 0.0
RNA 4.0 14.0 0.0 /

Table 1: Percentages of ERCC spike-ins and control RNAs predicted as ZINB by AutoZI on negative control datasets.

B cells CD14+ monocytes CD4 T cells CD8 T cells

10x v1, pbmc3k 42.4 43.4 47.9 47.4
10x v2, pbmc8k 29.6 27.6 32.3 24.2

10x v3, pbmc10k 12.3 11.8 12.0 20.4

Table 2: Percentages of genes predicted as ZINB by AutoZI on 10x PBMC datasets.

Negative control (ERCC spike-in and RNA) We ap-
ply AutoZI to four droplet-based negative control datasets,
spanning a wide range of experimental protocols (10x
Chromium v1 [14], inDrops [15] and GemCode [16])
and based on ERCC spike-ins and control RNAs. Such
datasets do not capture any biological process and the
ERCCs were shown not to be zero inflated in [7]. To
investigate whether AutoZI decision-making mechanism
can reproduce similar results, we selected ERCC spike-
ins and added the 100 most expressed control RNAs in
each dataset for joint analysis. 32.4% of ERCC spike-ins
and 100% of control RNAs had sufficient average expres-
sion. Hence we analyze between 24 and 44 spike-ins per
dataset. We report decisions from AutoZI in Table 1. Au-
toZI has a perfectly symmetric prior and is therefore not
biased towards any specific decision. However, 98.3%
of ERCC spike-ins and 94% of the control RNA under
study are retrieved as NB. These results corroborates the
hypothesis from [7] that droplet-based ERCC spike-ins
measurements are not zero-inflated and even may extend
it to the control RNAs part of these datasets.

A collection of 10X biological datasets We now check
whether the fraction of ZINB genes in PBMC datasets
sequenced using 10X Chromium is higher than in previ-
ous control RNA data and whether it decreases with the
version of the protocol, as technical improvements may
suggest. We focus on pbmc3k (10X v1.1.0), pbmc8k (10X
v2.1.0) and pbmc10k (10X v3.0.0, with protein expres-
sions). Their cell types were estimated using clustering
techniques and marker genes or proteins. We focus on B
cells, CD14+ monocytes, CD4 T cells and CD8 T cells.
For training, we select genes both among the 1,000 most
variable and expressed across all cell types in all datasets.
For analysis, in each cell type, we select genes with suffi-
cient average expression in all datasets, yielding between
203 and 228 genes per cell type. We report the percent-
ages of ZINB genes predicted for each cell type by a gene-
cell-type extension of AutoZI in Table 2. We note a higher
general fraction of zero-inflated biological gene-cell-types
(29.3%) than control RNAs (6%), indicating potential bi-
ological phenomena. However, for all cell types, we find
that the fraction of predicted ZINB genes decreases with
the version of 10X Chromium, potentially showing addi-
tional technical factors in zero-inflation. This may lead

to a less straightforward conclusion than in [7] where
droplet-based zero-inflation is stated as only biological.

Transcriptional burst kinetics of embryonic stem-
cells We previously explored the ability of AutoZI to
capture bimodal genes from simulated Beta-Poisson mod-
els. Such model was fitted to an allele-specific scRNA-
seq dataset of mESCs for characterizing transcriptional
bursting [3] through estimates of the kinetic parameters
kon, koff and s for each gene. We investigated whether the
decisions made by AutoZI could recapitulate the different
regimes for the Beta-Poisson distribution (Bimodal, UZ,
UNZ) in this dataset. Given the limited number of cells
(188), we applied AutoZI to a larger mouse hybrid ESC
dataset [17] (704 cells, one common allele), which was
not used for the inference of the kinetic parameters, but
should be biologically similar. After intersecting the gene
lists in the two datasets, we further randomly filtered the
genes and kept 52 bimodal, 52 UNZ and 29 UZ genes.
Only one of the UNZ genes did not have sufficient expres-
sion for analysis. We report the decisions from AutoZI
with respect to the kinetic parameters kon and koff in Fig-
ure 3. AutoZI predicts that 38 out of the 52 bimodal genes
are zero-inflated and that 37 out of 51 UNZ genes are not
zero-inflated. Taken together, our results suggest that Au-
toZI’s predictions of zero-inflation can be used not only
to account for technical factors (which are evident by the
decrease in ZI with progress in technology in Table 2) but
may also reflect biological factors such as transcriptional
bursting.

Figure 3: Genes from the ESC dataset from [17] plotted
in the space of (kon, koff) kinetic parameters, with their
NB/ZINB labels from AutoZI.
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