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Abstract 
Deciphering the mechanisms through which GWAS SNPs affect 
phenotypes is challenging. A number of methods, such as MetaXcan, 
have been put forth for associating the genetic component of either 
gene expression or DNA methylation to phenotypes. In this work, we 
propose a cascading epigenomic analysis for GWAS (CEWAS) to 
associate the epigenomic component of gene expression that is driven 
by genetics to phenotypes. On a well-powered GWAS, we show that 
CEWAS provides higher detection sensitivity than MetaXcan. 
Importantly, we show with simulations that statistics generated by 
CEWAS are properly calibrated. Further, using atSNP, we show that 
many SNPs associated with the detected genes affect transcription 
factor (TF) affinity. In fact, some of the detected genes are found to 
be potential TF targets, illustrating another utility of CEWAS. 
 

1 Introduction 
Genome wide association studies (GWAS) have identified thousands of SNPs related 
to complex traits and disease risk. Majority of these SNPs lies in non-protein coding 
regions, hence determining the mechanisms through which these SNPs act on 
phenotypes is nontrivial. Many studies use gene expression data to functionally map 
SNPs to genes, with expression quantitative trait locus (eQTL) analysis [1] being the 
most common approach. However, this approach suffers from the limitation that 
linkage disequilibrium (LD) can result in coincidental overlaps between eQTL and 
GWAS SNPs. To handle LD, a number of colocalization methods [2-4], such as 
summary data based Mendelian Randomization (SMR), have been proposed to 
identify pleiotropic SNPs that affect both gene expression and phenotypes. 
Alternatively, one can extract the genetic component of gene expression and 
associate that with phenotypes. Methods under this category includes PrediXcan [5], 
as well as summary statistics-based extensions, such as TWAS [6], MetaXcan [7], 
and MultiXcan [8]. 
Since GWAS SNPs are enriched in enhancers and open chromatin regions [9], their 
effects on phenotypes are likely exerted via gene regulation rather than directly on 
protein sequence modification [10]. By far, DNA methylation (DNAm) is the most 
widely-used epigenomic mark for examining gene regulation. Motivated by how 
associations between DNAm and SNPs (i.e. mQTLs) are seen genome-wide [11], a 
number of recent studies combine mQTL with GWAS using SMR [12-14] to 
investigate the epigenomic effects of GWAS SNPs. To reconcile with eQTL-based 
results, some studies further apply SMR to map CpGs to genes by finding CpG-gene 
pairs with shared genetic effects [12; 14].  



   

Fig. 1: CEWAS and z-score calibration. (a) CEWAS entails first building a set of models for predicting 
gene expression and DNAm levels. These models are then applied to GWAS summary statistics, zks, to 
estimate gene level z-scores, zig. (b) The statistics, zig, (yellow) for an exemplar gene generated by 
applying CEWAS to 10000 sets of null zks follow a standard normal distribution (blue), confirming 
that zig is properly calibrated. Using covariance estimated from the original DNAm levels, M, as 
opposed to only the genetic component of DNAm, Mp, inflates zig (red). (c) Standard deviation (std) of 
10000 zig’s for each gene i shown across all genes. The std of zig (with Mp) is ~1 for all genes. 

An immediate question is whether we can directly associate the epigenomic 
component of gene expression that is driven by genetics to phenotypes, as opposed 
to analyzing all data-type pairs and trying to tie results together heuristically. For 
this, we propose a cascading epigenomic analysis for GWAS, which we refer to as 
CEWAS (Fig. 1a). With MetaXcan as the building block, the idea is to build a 
prediction model for extracting the epigenomic component of expression for each 
gene and a corresponding set of prediction models for extracting the genetic 
component of DNAm levels for CpGs proximal to the given gene. Applying these 
models to GWAS summary statistics provides gene-level z-scores that reflect 
genetically-driven epigenomic effects. To test this approach, we first build the 
respective prediction models using imputed genotype, DNAm, and RNAseq data 
from the ROSMAP study [15]. We then apply CEWAS to a well-powered GWAS 
[16] and show that it provides higher detection power compared to MetaXcan. 
Importantly, we confirm with simulations that CEWAS produces calibrated z-scores. 
Moreover, we compare the SNP sets associated with genes detected by CEWAS and 
MetaXcan in terms of their impacts on transcription factor (TF) binding affinity 
using atSNP [17]. More SNPs from the CEWAS set are found to affect TF binding 
affinity. In fact, some of the detected genes are shown to be potential TF targets.  
 
2  Methods 
2.1  Cascading Epigenomic Analysis for GWAS  
Motivated by the observation that GWAS SNPs are enriched in regulatory regions 
[9], we propose CEWAS (Fig. 1a) to analyze the cascading effects of genetics from 
epigenome to transcriptome and eventually the phenome. With MetaXcan as the 
building block, we first build a model for extracting the epigenomic component of 
expression for each gene i: Ei = ΣjϵCiwij

gMj + εi
g, where Ei is a n×1 vector containing 

the expression level of gene i from n subjects, Mj is a n×1 vector containing the 
DNAm levels of CpG j, and wij

g is the jth element of a mi×1 model weight vector, 
wi

g, to be estimated. Ci is the set of mi CpGs within 1Mb from the transcription 
starting site (TSS) of gene i. Following MetaXcan, we estimate wij

g using elastic net 
regression by applying GLMNET [18] with its default settings.  
To extract the genetic component of DNAm for each CpG j, we model Mj in a 
similar manner: Mj = ΣkϵSjwjk

cSk + εj
c, where Sk is a n×1 vector containing the dosage 

of SNP k, wjk
c is the kth element of a lj×1 model weight vector, wj

c, to be estimated 
with elastic net regression, and Sj is the set of lj SNPs within 100Kb from the CpG j.  
Given wij

g
 and wjk

c, genetically-driven epigenomic effects at gene level can be 
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estimated in a manner analogous to sequentially applying MetaXcan: 
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c/σi
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c/σi
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cσk
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c
 ∙ zk

s)  
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cσk

s/σi
g

 ∙ zk
s, (1) 

where zi
g is the z-score at gene level for gene i, zj

c is the z-score at CpG level for 
CpG j, and zk

s is the z-score at SNP level for SNP k. σi
g and σk

s are the variance of 
gene i and SNP k, respectively. A gene is declared significant if the corresponding p-
value of its zi

g is less than 0.05 with Bonferroni correction. A critical deviation of 
CEWAS from MetaXcan is the way in which σi

g needs to be estimated. Since only 
genetically-driven epigenomic effects are retained by the DNAm prediction models, 
we must estimate σi

g based only on the genetic component of DNAm. For this, we 
set σi

g to wi
gTcov(Mp)wi

g, where Mp is a n×mi matrix containing predicted DNAm 
levels. As will be shown, estimating σi

g with Mp is critical for zi
g to be calibrated.  

2.2  CEWAS z-score Calibration  
For the detected genes to be reliable, we need to ensure that zi

g generated by 
CEWAS is calibrated. In particular, applying (1) to null zk

s should output null zi
g. To 

properly test whether this criterion is met, the choice of input to (1) is critical. In 
addition to requiring zk

s of each SNP k to follow N(0,1), the LD structure of all SNPs 
involved in (1), i.e. all nodes at the bottom layer in Fig. 1a, must be accounted for. 
To satisfy these two conditions, for each gene i, we draw 10000 sets of zk

s from 
N(0,Ri), where Ri is the correlation between all SNPs in Sj for j ϵ Ci. Using 
correlation, as opposed to covariance, ensures the standard deviation of each zk

s is 1. 
For generating Ri, we use the ROSMAP imputed genotype data. For evaluation, we 
assess if each set of 10000 zi

g’s of each gene i follows N(0,1). 
2.3  TF and Gene Target Identification 

We hypothesize that SNPs (those with wij
gwjk

c > 0) of genes detected by CEWAS 
might be regulatory with a portion of their effects exerted via altering TF binding 
affinity. To test this hypothesis, we apply atSNP [17] to determine if any TFs (from 
the ENCODE project [19]) are affected by these SNPs. SNP-TF motif pairs are 
declared as significant at an α of 0.05 with Bonferroni correction for the number of 
pairs tested. For each detected SNP-TF motif pair, we further test if the associated 
gene (for which the SNP is given non-zero model weight) might be a TF target by 
applying a standard linear interaction model on the ROSMAP data. To test for any 
effect of TF l on gene expression, i.e. the main effect of TF l and its interaction with 
SNP k jointly, we apply extra sum of squares. Significance is declared at an α of 0.05 
with Bonferroni correction for the number of SNP-TF-gene triples analyzed.  
 
3  Mater ial s  
Imputed genotype, DNAm, and RNAseq data from the ROSMAP study [15] were 
used in this work. Genotype data were acquired from 2067 subjects. The DNAm and 
RNAseq data were derived from brain tissues of 702 and 698 subjects, respectively. 
543 subjects have both genotype and DNAm data; 485 subjects have both DNAm 
and RNAseq data; and 534 subjects have both genotype and RNAseq data. Similar 
preprocessing pipelines were applied to the data as previously described [20]. 
 
4 Resul ts  and Discuss ion 
We applied CEWAS models built from brain tissue data to a well-powered 
schizophrenia GWAS [16]. Although the ROSMAP subjects are of European descent, 
the reference allele for some SNPs could be different from the GWAS. We accounted 
for allele flips by inverting the sign of the GWAS z-scores, and removed all 



ambiguous SNPs, i.e. cases where A1 and A2 are complementary, e.g. A1=A, A2=T. 
For comparison, we applied MetaXcan with gene expression prediction models (wik

g) 
built using the same sets of SNPs as CEWAS. We also built models with SNPs 
within 1Mb from TSS. Similar results were obtained hence not reported here. 
Of the 10129 genes tested by CEWAS, 118 genes were found to be significant. In 
contrast, MetaXcan detected 89 genes out of 12525 genes tested. Hence, CEWAS 
seems to provide higher detection sensitivity, and this is true even when we used the 
same p-value threshold as MetaXcan. The difference in the number of tested genes 
was due to e.g. some genes having no proximal CpGs that were given non-zero 
model weights. The p-values between CEWAS and MetaXcan (restricting to those 
passing a nominal threshold of 0.05) are highly correlated (r=0.44, p<10-100), 
suggesting some shared signals being detected. Importantly, our simulations (Section 
2.2) confirmed that gene-level z-scores from CEWAS are calibrated (Fig. 1b&c), 
provided that we use predicted DNAm levels to estimate σi

g in (1). Hence, CEWAS’s 
higher detection sensitivity compared to MetaXcan is not due to z-score inflation. 
To decipher what gave rise to the differences in genes detected by CEWAS and 
MetaXcan, we assessed the SNPs (those with wij

gwjk
c > 0 and wik

g > 0, respectively) 
of the significant genes in terms of their effects on TF binding affinity. Using atSNP, 
we tested 32740575 SNP-TF motif pairs with 37262 pairs found to be significant for 
CEWAS (Fig. 2b), whereas 5577 out of 5086095 pairs are significant for MetaXcan. 
We suspect the increased number of significant SNP-TF motif pairs with CEWAS (p 
< 0.01 based on Fisher’s exact test) might relate to interactions between DNAm and 
TF binding being indirectly captured by CEWAS. Also, 63 out of 118 genes detected 
by CEWAS are found to be potential TF targets. For example, GATAD2A is found to 
be associated with SP1 (Fig. 2c), and SP1 is a TF implicated in schizophrenia [21]. 
Thus, CEWAS can potentially be used for finding disease-related TF targets. 
 

   
Fig. 2: CEWAS vs. MetaXcan. (a) Gene-level p-values of CEWAS vs. MetaXcan. (b) Proportion of 
SNP-TF motif pairs declared significant. (c) Standardized expression levels of SP1 vs. GATAD2A. 
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