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Abstract

The adoption of deep learning techniques in genomics has been hindered by the difficulty of mecha-
nistically interpreting the models that these techniques produce. In recent years, a variety of post-hoc
attribution methods have been proposed for addressing this neural network interpretability problem
in the context of gene regulation. Here we describe a complementary way of approaching this
problem. Our strategy is based on the observation that two large classes of biophysical models of
cis-regulatory mechanisms can be expressed as deep neural networks in which nodes and weights
have explicit physiochemical interpretations. We also demonstrate how such biophysical networks
can be rapidly inferred, using modern deep learning frameworks, from the data produced by certain
types of massively parallel reporter assays (MPRAs). These results suggest a scalable strategy for
using MPRAs to systematically characterize the biophysical basis of gene regulation in a wide range
of biological contexts. They also highlight gene regulation as a promising venue for the development
of scientifically interpretable approaches to deep learning.

Deep learning – the use of large multi-layer neural networks in machine learning applications – is revolutionizing
information technology [1]. There is currently a great deal of interest in applying deep learning techniques to problems
in genomics, especially for understanding gene regulation [2–5]. These applications remain somewhat controversial,
however, due to the difficulty of mechanistically interpreting neural network models trained on functional genomics
data. Multiple attribution strategies, which seek to extract meaning post-hoc from neural networks that have rather
generic architectures, have been proposed for addressing this interpretability problem [6–8]. However, there remains a
substantial gap between the outputs of such attribution methods and fully mechanistic models of gene regulation.

Here we advocate for a complementary approach: the inference of neural network models whose architecture reflects ex-
plicit biophysical hypotheses for how cis-regulatory sequences function. This strategy is based on two key observations.
First, two large classes of biophysical models can be formulated as three-layer neural networks that have a stereotyped
form and in which nodes and weights have explicit physiochemical interpretations. This is true of thermodynamic
models, which rely on a quasi-equilibrium assumption [9–14], as well as kinetic models, which are more complex but
do not make such assumptions [15–17]. Second, existing deep learning frameworks such as TensorFlow [18] are able to
rapidly infer such models from the data produced by certain classes of MPRAs.

The idea of using neural networks to model the biophysics of gene regulation goes back to at least [19]. To our
knowledge, however, the fact that all thermodynamic models of gene regulation can be represented by a simple
three-layer architecture has not been previously reported. We are not aware of any prior work that uses neural networks
to represent kinetic models or models involving King-Altman diagrams. There is a growing literature on modeling
MPRA data using neural networks [20–24]. However, such modeling has yet to be advocated for MPRAs that dissect
the mechanisms of single cis-regulatory sequences, such as in [25–29], which is our focus here. Finally, some recent
work has used deep learning frameworks to infer parametric models of cis-regulation [30, 31]. These studies did not,
however, infer the type of explicit biophysical quantities, such as ∆G values, that our approach recovers.

All thermodynamic models of cis-regulation can be represented as three-layer neural networks as follows. First one
defines a set of molecular complexes, or “states”, which we index using s. Each state has both a Gibbs free energy ∆Gs
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Figure 1: A thermodynamic model of transcriptional regulation. (A) Transcriptional activation at the E. coli lac
promoter is regulated by two proteins, CRP and σ70 RNA polymerase (RNAP). CRP is a transcriptional activator
that up-regulates transcription by stabilizing RNAP-DNA binding. ∆GC and ∆GR respectively denote the Gibbs
free energies of the CRP-DNA and RNAP-DNA interactions, while ∆GI denotes the Gibbs free energy of interaction
between CRP and RNAP. (B) Like all thermodynamic models of gene regulation, this model consists of a set of states,
each state having an associated Gibbs free energy and activity. The probability of each state is assumed to follow the
Boltzmann distribution. (C) The corresponding activity predicted by such thermodynamic models is the state-specific
activity averaged together using these Boltzmann probabilities. (D) This model formulated as a three-layer neural
network. First layer nodes represent interaction energies, second layer nodes represent state probabilities, and third layer
nodes represent transcriptional activity. The values of weights are indicated; gray lines correspond to zero weights. The
second layer has a softmin activation, while the third has a linear activation. All thermodynamic models of cis-regulation
can be represented using this general three-layer form.

and an associated activity αs. These energies determine the probability Ps of each state occurring in thermodynamic
equilibrium via the Boltzmann distribution,1

Ps =
e−∆Gs∑
s′ e

−∆Gs′
. (1)

The energy of each state is, in turn, computed using integral combinations of the individual interaction energies ∆Gj

that occur in that state. We can therefore write ∆Gs =
∑

j ωsj∆Gj , where ωsj is the number of times that interaction
j occurs in state s. The resulting activity predicted by the model is given by the activities αs of the individual states
averaged over this distribution, i.e., t =

∑
s αsPs.

Fig. 1 illustrates a thermodynamic model for transcriptional activation at the E. coli lac promoter. This model involves
two proteins, CRP and RNAP, as well as three interaction energies: ∆GC , ∆GR, and ∆GI . The rate of transcription
t is further assumed to be proportional to the fraction of time that RNAP is bound to DNA (Fig. 1A). This model is
summarized by four different states, two of which lead to transcription and two of which do not (Fig. 1B). Fig. 1C
shows the resulting formula for t in terms of model parameters. This model is readily formulated as a feed-forward
neural network (Fig. 1D). Indeed, all thermodynamic models of cis-regulation can be formulated as three-layer neural
networks: layer 1 represents molecular interaction energies, layer 2 (which uses a softmin activation) represents state
probabilities, and layer 3 (using linear activation) represents the biological activity of interest, which in this case is
transcription rate.

We can infer thermodynamic models like these for a cis-regulatory sequence of interest (the wild-type sequence) from
the data produced by an MPRA performed on an appropriate sequence library [26]. Indeed, a number of MPRAs have
been performed with this explicit purpose in mind [26, 27, 33–35]. To this end, such MPRAs are generally performed

1To reduce notational burden, all ∆G values are assumed to be in thermal units. At 37◦C, one thermal unit is 1 kBT =
0.62 kcal/mol, where kB is Boltzmann’s constant and T is temperature.
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Figure 2: Inference of a thermodynamic model from MPRA data. (A) Schematic of the sort-seq MPRA of [26]. A 75
bp region of the E. coli lac promoter was mutagenized at 12% per nucleotide. Variant promoters were then used to
drive the expression of GFP. Cells carrying these expression constructs were then sorted using FACS, and the variant
sequences in each bin were sequenced. This yielded data on about 5× 104 variant promoters across 10 bins. (B) The
neural network from Fig. 1D, but with ∆GC and ∆GR expressed as linear functions of the DNA sequence ~x, as well as
a dense feed-forward network mapping activity t to bins via a probability distribution p(bin|t). Gray lines indicate
weights fixed at 0. The weights linking nodes P3 and P4 to node t were constrained to have the same value tsat. (C)
The parameter values inferred from the MPRA data of [26]. Shown are the CRP energy matrix ~θC , the RNAP energy
matrix ~θR, and the CRP-RNAP interaction energy ∆GI . Since increasingly negative energy corresponds to stronger
binding, they y-axis in the logo plots is inverted. Logos were generated using Logomaker [32].

using libraries that consist of sequence variants that differ from the wild-type sequence by a small number of single
nucleotide polymorphisms (SNPs). The key modeling assumption that motivates using libraries of this form is that
the assayed sequence variants will form the same molecular complexes as the wild-type sequence, but with Gibbs free
energies and state activities whose values vary from sequence to sequence. By contrast, variant libraries that contain
insertions, deletions, or large regions of random DNA (e.g. [20, 21, 23, 24, 31]) are unlikely to satisfy this modeling
assumption.

Fig. 2A summarizes the sort-seq MPRA described in [26]. Lac promoter variants were used to drive GFP expression
in E. coli, cells were sorted into 10 bins using fluorescence-activated cell sorting, and the variant promoters within
each bin were sequenced. This yielded data comprising about 5× 104 variant lac promoter sequences, each associated
with one of 10 bins. The authors then fit the biophysical model shown in Fig. 1C, but under the assumption that
∆GC = ~θC · ~x+ µC and ∆GR = ~θR · ~x+ µR, where ~x is a one-hot encoding of promoter DNA sequence.

Here we used TensorFlow to infer the same model formulated as a deep neural network. Specifically, we augmented the
network in Fig. 1D by making ∆GC and ∆GR sequence-dependent as in [26]. To link t to the MPRA measurements,
we introduced a feed-forward network with one hidden layer and a softmax output layer corresponding to the 10 bins
into which cells were sorted. Model parameters were then fit to the MPRA dataset using stochastic gradient descent and
early stopping. The results agreed well with those reported in [26]. In particular, the parameters in the energy matrices
for CRP (~θC) and RNAP (~θR) exhibited respective Pearson correlation coefficients of 0.986 and 0.994 with those
reported in [26]. The protein-protein interaction energy that we found, ∆GI = −2.9 kcal/mol, was also compatible
with the previously reported value ∆GI = −3.3± 0.4 kcal/mol.

A major difference between our results and those of [26] is the ease with which they were obtained. Training of the
network in Fig. 2B consistently took about 15 minutes on a standard laptop computer. The model fitting procedure
in [26], by contrast, relied on a custom Parallel Tempering Monte Carlo algorithm that took about a week to run on a
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Figure 3: A kinetic model for transcriptional initiation by E. coli RNAP. (A) In this model, promoter DNA can
participate in three complexes: unbound, closed, and open [39, 40]. Transitions between these complexes are governed
by five rate constants: k1, k−1, k2, k−2, k3. (B) A formula for the steady-state rate of mRNA production can be obtained
using King-Altman diagrams [41, 42]. (C) This formula can be represented using the three-layer neural network where
layer 1 represents log transition rates, layer 2 (softmax activation) represents normalized King-Altman diagrams, and
layer 3 (linear activation) represents promoter activity. Black lines indicate weight 1; gray lines indicate weight 0. Note
that the single nonzero weight connecting layer 2 to layer 3 (orange) is actually the transition rate k3 from layer 1. All
kinetic models of cis-regulation share this general three-layer form.

multi-node computer cluster (personal communication), and more recent efforts to train biophysical models on MPRA
data have encountered similar computational bottlenecks [34, 35].

Also of note is the fact that in [26] the authors inferred models using information maximization. Specifically, the authors
fit the parameters of t(~x) by maximizing the mutual information I[t; bin] between model predictions and observed bins.
One difficulty with this strategy is the need to estimate mutual information. Instead, we used maximum likelihood
to infer the parameters of t(~x) as well as the experimental transfer function (i.e., noise model) p(bin|t), which was
modeled by a dense feed-forward network with one hidden layer. These two inference methods, however, are essentially
equivalent: in the large data regime, the parameters of t that maximize I[t; bin] are the same as the parameters one
obtains when maximizing likelihood over the parameters of both t and p(bin|t); see [36–38].

A shortcoming of thermodynamic models is that they ignore non-equilibrium processes. Kinetic models address this
problem by providing a fully non-equilibrium characterization of steady-state activity. Kinetic models are specified by
listing explicit state-to-state transition rates rather than Gibbs free energies. Fig. 3A shows a three-state kinetic model
of transcriptional initiation consisting of unbound promoter DNA, an RNAP-DNA complex in the closed conformation,
and the RNAP-DNA complex in the open conformation [39, 40]. The irreversible rate k3 going from the open to the
unbound states represents transcript initiation. The overall transcription rate in steady state is therefore k3 times the
occupancy of the open complex.

King-Altman diagrams [41, 42], a technique from mathematical enzymology, provide a straight-forward way to compute
steady-state occupancy in kinetic models. Specifically, each state’s occupancy is proportional to the sum of directed
spanning trees (a.k.a. King-Altman diagrams) that flow to that state, where each spanning tree’s value is given by the
product of rates comprising that tree. Fig. 3B illustrates this procedure for the kinetic model in Fig. 3A. Every such
kinetic model can be represented by a three-layer neural network (e.g., Fig. 3C) in which first layer nodes represent log
transition rates, second layer nodes (after a softmax activation) represent normalized King-Altman diagrams, and third
layer nodes represent the activities of interest.

Here we have shown how both thermodynamic and kinetic models of gene regulation can be formulated as three-layer
deep neural networks in which nodes and weights have explicit biophysical meaning. This represents a new strategy
for interpretable deep learning in the study of gene regulation, one complementary to existing post-hoc attribution
methods. We have further demonstrated that a neural-network-based thermodynamic model can be rapidly inferred
from MPRA data using TensorFlow. This was done in the context of a well-characterized bacterial promoter because
previous studies of this system have established concrete results against which we could compare our inferred model.
The same modeling approach, however, should be readily applicable to a wide variety of biological systems amenable
to MPRAs, including transcriptional regulation and alternative mRNA splicing in higher eukaryotes.
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