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Abstract

Engineering gene sequences with defined functional properties is a major goal
of synthetic biology. Deep learning models, combined with gradient ascent-style
optimization, show promise for sequence generation. The generated sequences can
however get stuck in local minima, have low diversity and their fitness depends
heavily on initialization. Here, we develop deep exploration networks (DENs), a
type of generative model tailor-made for exploring an input space to minimize the
cost of a neural network fitness predictor. By making the network compete with
itself to promote sequence diversity during training, we obtain generators capable
of sampling hundreds of thousands of high-fitness sequences. We demonstrate
DENs in the context of alternative polyadenylation. Using DENs, we engineered
polyadenylation signals with more than 10-fold higher selection odds than gradient
ascent-generated patterns, and validated their performance experimentally.

1 Introduction & Related work

Designing DNA sequences for a target cellular function is a difficult task, as the cis-regulatory
information encoded in any stretch of DNA can be very complex and affect numerous mechanisms,
including transcriptional and translational efficiency, splicing, 3’ end processing, and more. Yet,
sequence-level design of genetic components has been making rapid progress in the past few years,
in part thanks to improved bioinformatics modeling. In particular deep learning has emerged as
state-of-the-art in predictive modeling for many sequence-function problems (Alipanahi et. al., 2015;
Zhou et. al., 2015; Quang et. al., 2019; Avsec et. al., 2019; Kelley et. al., 2016; Greenside et. al.,
2018; Kelley et. al., 2018; Jaganathan et. al., 2019; Bogard et. al., 2019; Sample et. al., 2019).

Recently, gradient ascent optimization of the input sequence through a neural network fitness predictor
has been proposed as an alternative to discrete search heuristics such as genetic algorithms. At its
core, the method treats the entire input pattern as a large position weight matrix (PWM) which is
evaluated by the fitness predictor. The fitness score is used to compute a gradient with respect to
the PWM parameters and optimized by gradient ascent. This method has been used to generate TF
binding motifs (Lanchantin et. al., 2016, Killoran et. al., 2017), polyadenylation signals (Bogard et.
al., 2019) and protein 3D structures (Evans et. al., 2018). While showing promise, the basic method
has a number of limitations. First, it may easily get stuck in local minima and the converged fitness
depends on initialization (Bogard et. al., 2019). Second, the method offers no means of controlling
sequence diversity, which may be required for generation of large candidate sequence sets.
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To address these limitations, we develop a variant of generative neural network models which we
call Deep Exploration Networks (DENs). In DENs, we promote sequence diversity during training
by making the generator compete with itself to produce dissimilar patterns (Figure 1A). We thus
force the model to explore a much larger region of the cost landscape and effectively maximize
both sequence fitness and diversity. The architecture shares similarities with (Killoran et. al., 2017).
However, in contrast to (Killoran et. al., 2017) where optimization is done on the input seed of a
pre-trained GAN, here we optimize the weights of the generator to maximize both a fitness and
diversity cost. As a result, the generator learns to sample a large and diverse set of sequences with
high fitness score. The approach is conceptually similar to variational autoencoders (Kingma &
Welling, 2013) and adaptive sampling methods (Brookes et. al., 2019), but rather than encoding
the original pattern distribution or a conditional distribution, the model centers on the objective and
maximizes pattern variation. We evaluate DENs on the task of designing 3’ UTR sequences with
target APA isoform abundance (Figure 1B). We find that DENs learn to generate sequences with
significantly higher fitness compared to equivalent gradient ascent-generated sequences.

2 Exploration in Deep Generative Models

The predictor P used in a DEN is a differentiable model capable of predicting some property of an
input pattern. The generator G is a neural network designed to produce a pattern which can be passed
as input to the predictor. Here, we are interested in generating DNA sequences; these patterns are
typically represented as 1-hot-coded matrices, where columns denote nucleotide position and rows
denote nucleotide identity ({0, 1}N×4). The predictor output is used to define an objective (the cost
function), and the overall goal is to generate sequences minimizing the cost. Only the generator G is
optimized, having pre-trained P to accurately predict the targeted biological function.

This cost layout is quite different compared to a classical GAN (Goodfellow et. al., 2014), which
is typically optimized to minimize some cost C(D(Data),D(G(z))) such that an adversarial dis-
criminator D can not distinguish between the real data and the distribution generated by G. Here,
we instead jointly minimize the fitness cost Cfitness(P(G(z1)) of P and an adversarial diversity cost
Cdiversity(G(z1),G(z2)) of G. Note that, in contrast to (Killoran et. al., 2017) where optimization is
done on a single input seed z of a pre-trained GAN, minz Cfitness(P(G(z))), we optimize the generator
G itself, minG Cfitness(P(G(z1)) + Cdiversity(G(z1),G(z2)), for all seeds z1, z2 ∈ U(−1, 1)100.

We define Cfitness(P(G(z)) in terms of the predictor’s output. For example, in the case of models that
predict isoform abundances, we may minimize the (symmetric) KL-divergence between predicted and
target proportions: Cfitness(P(G(z)) = KL(P(G(z))||t)+KL(t||P(G(z))), where P(G(z), t ∈ [0, 1].

The distinguishing feature of DENs is to enforce exploration during training by controlling the degree
of sequence diversity generated by the network. We do so by making the generator compete with
itself; we penalize any two generated sequence patterns based on similarity. This mechanism is
implemented by running the generator twice at each step of the optimization with two random seeds
z1, z2 ∈ U(−1, 1). Here, we penalize sequence patterns using a multi-offset cosine similarity loss.
We found empirically that minimizing a slack-bound cosine similarity gives the best results, where a
fraction of the sequences can be identical up to a margin ε without incurring any loss. Given two
sequence patterns S(1) and S(2) generated by G, we define Cdiversity(S

(1), S(2)) as:
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G generates patterns X = G(z), representing nucleotide log probabilities (X ∈ RN×4). By applying
Softmax sij = exij∑M

k=1 e
xik

, we turn the logits into a PWM S ∈ [0, 1]N×4. We can directly pass S
to the predictor P , however, the gradient propagated backward through S approaches zero as the
nucleotide logits push the Softmax probabilities toward their extremes. We can alternatively sample
K independent 1-hot-coded patterns from S and backpropagate the gradient using straight-through
estimation (Bengio, Léonard & Courville, 2013; Courbariaux et. al., 2016; Bogard et. al., 2019). As
our results indicate below, using both representations for Cfitness(S) and walking down the average
gradient can enhance convergence even further. For the diversity loss Cdiversity(S

(1), S(2)), however,
we only use the sampled (straight-through) representation.
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Figure 1: (A) The generator is run twice on two seeds, producing two sequence patterns. One
pattern is evaluated by the fitness predictor, resulting in an objective gradient. The patterns are also
penalized by similarity, resulting in an exploration gradient, and the generator is updated by both
gradients. (B) The generative task is to design proximal APA signals which are polyadenylated at
target proportions. (C) Evaluation of five separate DENs trained to generate sequences according to
APA isoform targets 5%, 25%, 50%, 75% and 100% (‘Max’). (Top) Predicted isoform proportions of
1,000 sampled sequences per target. Mean proportions are within 1% of target proportions. (Bottom)
Generator sequence diversity, illustrated by 20 randomly sampled sequences per objective on a pixel
grid where rows denote sequence samples. 0% duplication rate at 500,000 sampled sequences. (D)
DEN validation loss after 1,500 training iterations, using three modes of sequence representation:
1. PWM, 2. ST-sampled One-hots and 3. Both. ’1x’, ’5x’ etc. refers to the number of samples
drawn. (E) The diversity loss was evaluated by re-training the Max-APA DEN with a small (left) and
large (right) loss coefficient respectively. (Top) Predicted isoform proportion for 1,000 generated
sequences. (Bottom) Sequence diversity illustrated 100 sampled sequences. Small coefficient (left):
Mean log odds = 6.06 +- 0.12, 99.5% duplication rate at 100,000 samples. Large coefficient (right):
Mean log odds = 8.91 +- 0.72, 0% duplication rate at 100,000 samples. (F) Two Max-APA sequences
generated by the DEN were synthesized on minigene reporters in competition with baseline gradient
ascent-generated sequences using the same fitness predictor. Isoform fold changes were assayed
using qPCR. The newly generated sequences have on average 9.4-fold increased preference.
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3 Experiments

We evaluate DENs in the context of Alternative Polyadenylation (APA). APA is a 3’ end processing
event where competing polyA signals (PAS) within a 3’ UTR give rise to multiple mRNA isoforms
(Figure 1B) (Di Giammartino et al., 2011; Tian and Manley, 2017). A typical PAS consists of a core
sequence element (CSE), as well as diverse upstream and downstream sequence elements (USE,
DSE). We used a convolutional neural network for predicting APA isoform abundance (APARENT;
Bogard et. al., 2019). The DEN was tasked with generating APA signals with precisely defined target
isoform abundances as well as maximally strong signals. The generator network follows a DC-GAN
architecture (Radford et. al., 2015). We built the DEN in Keras (Chollet et. al., 2015) and optimized
the generator with Adam (Kingma et. al., 2014).

We trained 5 generators, each optimized to the following target isoform proportions: 0%, 25%, 50%,
75% and maximal use (‘Max’). The objectives were encoded in the cost function by minimizing the
KL-divergence between the predicted APA isoform proportion P(G(z)) and the target t ∈ [0, 1]:

Cfitness(P(G(z)) = KL(P(G(z))||t) + KL(t||P(G(z)))

After training, each generator could produce accurate sequence samples (Figure 1C, Top): Each
generated isoform distribution mean was within 1% from the target proportion. The generated
sequences for the Max-objective were predicted to be extremely efficient signals (on average 99.98%
predicted use). All five generators exhibited high diversity (Figure 1C, Bottom), with 0% duplication
rate. We re-trained the Max-isoform generator when using one-hot samples (straight-through),
the continuous PWM, or a combination of both as input to the predictor (Figure 1D). Using both
representations, the loss decreased to less than 50% the magnitude of the PWM loss after 30 epochs.

To evaluate the importance of exploration, we re-trained the Max isoform-generator under two
different parameter settings; in one instance, we lowered the diversity loss coefficient to a small value,
and in another instance we increased it (Figure 1E). With a low coefficient, the generator only learns
to sample few, low-diversity sequences (mean log odds = 6.06, 99.5% duplication rate). With an
increased coefficient, generated sequences become much more diverse and the mean isoform odds
increase almost 20-fold (mean log odds = 8.91, 0% duplication rate). These results suggest that
exploration during training may drastically improve the final fitness of the generator.

Finally, we characterized experimentally whether DEN-generated polyA signals truly are more
optimal than sequences generated by the baseline gradient ascent method. To that end, we synthesized
APA reporters with two adjacent polyA signals (Figure 1F): Each reporter contained one of the newly
generated Max-target signals, as well as one of the strongest gradient ascent-optimized signals from
(Bogard et. al., 2019). In order to discount first-come-first-serve bias, we assayed both orientations
for each reporter. The reporters were cloned onto plasmids and delivered to HEK293 cells. We
quantified RNA isoform levels using a qPCR assay, measuring the Ct values of total and distal RNA.
Using Ct values to estimate odds ratios, we found that the DEN-generated sequences were on average
11.6-fold more preferred than the gradient ascent-sequences. To put this in perspective, the strongest
gradient ascent-sequence had usage odds of 127:1 (99.22%) relative to a distal bGH PAS separated by
200 nt. The DEN-sequences would have usage odds of 1481:1 (99.93%) relative to the same signal.

4 Conclusion

We developed an end-to-end differentiable generative network model, Deep Exploration Networks
(DENs), capable of synthesizing large, diverse sets of sequences with high fitness. The model could
generate polyadenylation signals with precisely defined target isoform ratios, and it could generate
polyadenylation signals that were far stronger than any previously designed sequence.

DENs incorporate many techniques to improve its generative capabilities, but the single most
important contribution is the control of exploration during training. By having the generator sample
two sequences given different seeds, we developed a hinge-style loss which penalized sequence pairs
based on similarity. Our analysis showed that the magnitude by which we punish sequence similarity
almost entirely determines final generator diversity and, importantly, also largely determines the final
fitness of the generated patterns. During training, the optimizer trades off exploring (repelling similar
patterns) with exploiting (maximizing pattern fitness) until convergence is reached. In the end, this
scheme produces generative models with (1) high fitness, and (2) controllable diversity.
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