
GPU-Accelerated SVM Learning for Extremely Fast
Large-Scale Proteomics Analysis

John T. Halloran
Department of Public Health Sciences

University of California, Davis
jthalloran@ucdavis.edu

David M. Rocke
Department of Public Health Sciences

University of California, Davis
dmrocke@ucdavis.edu

Abstract

In proteomic analysis pipelines, semi-supervised support vector machine (SVM)
learning [12] is a critical step towards accurately identifying the generating peptides
of tandem mass spectra. Called Percolator, this algorithm iteratively learns the
linear decision boundary between correct and incorrect peptide-spectrum matches
(PSMs) and uses the converged decision boundary to rerank the input PSMs.
While this reranking greatly improves peptide identification accuracy, Percolator re-
quires substantial analysis time, particularly for the large-scale datasets commonly
produced in modern protein studies. Recent work [9] has reduced such lengthy
runtimes by updating Percolator’s SVM solver to state-of-the-art, multithreaded
solvers. In this work, we present primal solvers for linear SVMs novelly designed
to take advantage of graphical processing units (GPUs). The resulting GPU solvers
drastically reduce Percolator runtime for large-scale analysis, offering up to a 72%
improvement over the average performance of previous multithreaded speedups.
While implemented within the Percolator codebase, the presented GPU solvers are
easily portable to the widely used linear SVM learning packages LIBLINEAR [2]
and scikit-learn [18].

1 Introduction

Introduced slightly over a decade ago, semi-supervised SVM learning using the Percolator al-
gorithm [12] has become vital to accurately analyze proteomics data collected via tandem mass
spectrometry (MS/MS). Given a collection of MS/MS spectra representing the proteins present in a
complex biological sample, the first stage of proteomics analysis typically consists of identifying
the input spectra by searching a database of peptides. Database-search thus results in a list of
peptide-spectrum matches (PSMs). In practice, however, database-search scoring functions are often
poorly calibrated, making PSMs from different spectra difficult to compare and diminishing overall
identification accuracy. To correct for this, PSM scores are often post-processed using Percolator,
which first estimates PSM labels then learns the linear decision boundary between labeled PSMs,
repeating these two steps for a user-specified number of iterations. Input PSM scores are subsequently
recalibrated using the final learned decision boundary.

The accuracy improvements of Percolator recalibration have been well demonstrated for a wide
variety of PSM scoring functions (e.g., linear [12, 1, 22], p-value based [4, 10, 15], and dynamic
Bayesian networks [6]), complex PSM feature sets (e.g., Fisher kernels [7, 8], subscores of linear
functions [19], ensembles of scoring functions [21], and features derived using deep models [3]), and
relative to other popular post-processors [20]. Indeed, many complex, state-of-the-art proteomics
workflows have adapted Percolator as a critical component of their analysis pipelines. However, while
Percolator offers significant accuracy gains, they come at lengthy runtimes as the size of commonly
produced proteomic datasets has dramatically increased (by several orders of magnitude) since

14th Machine Learning in Computational Biology (MLCB) Meeting 2019, Vancouver, Canada.



Percolator’s debut. For instance, modest datasets comprised of only several million PSMs require
several hours of Percolator analysis [9], while more common proteomics datasets–whose PSMs
regularly number in the tens-of-millions–may require up to a day (or more) of analysis time [17].

To speed up the lengthy analysis times required of large-scale studies, recent work [9] has updated Per-
colator’s original SVM solver to the state-of-the-art Trust Region Newton (TRON) algorithm [16, 11]
and utilized large numbers of compute cores. Optimized for use within Percolator, this multithreaded
version of TRON was shown to drastically reduce large-scale analysis time. Herein, we further
improve upon the multithreaded TRON speedups by using GPUs to accelerate computation.

We first present a mixed-architecture solver which combines the strengths of both architectures; CPU
multithreading for the essential random access components of TRON and a GPU for fast computation
in contiguous memory. Compared to the purely multithreaded TRON solver (referred to as TRON
CPU), this TRON CPU+GPU solver considerably speeds up SVM learning time for all considered
thread configurations; TRON CPU achieves a 4.3 fold speedup (averaged over all considered threads)
over Percolator’s current SVM learning engine, whereas TRON CPU+GPU is a thread-average 6.4
times faster. Next, we present a GPU-optimized solver which, rather than adhering to the random-
access design of the original TRON algorithm, focuses on device-side (i.e., GPU) compute with as
few transactions between device and host (i.e., CPU) as possible. The TRON GPU solver further
reduces overall SVM learning time, resulting in a 7.4 fold speedup and reducing Percolator learning
time from 14.4 hours to just 1.9 hours.

2 Semi-supervised SVM Learning for MS/MS Data using Percolator

In practical MS/MS experiments, ground truth labels (i.e., the true peptides responsible for gener-
ating each MS/MS spectrum) are not known a priori; indeed, it is the role of the database-search
scoring algorithm to identify these generating peptides. In order to assess the confidence of peptide
identifications, two peptide databases are typically searched–a target database of real peptides and a
decoy database of permuted target sequences, which we know do not occur in nature–and used to
compute the false discovery rate (FDR).

Percolator receives as input both decoy and target PSMs, along with features derived for each PSM.
This data is semi-supervised, as we know that decoy PSMs are incorrect identifications (i.e., belong to
the negative class), but we are not certain which target PSMs are correct. Each iteration of Percolator
thus begins by calculating the target PSMs which achieve a stringent FDR of 0.01% (i.e., are highly
confident identifications) and assigning these targets positive training labels. In order to prevent
overfitting and improve generalizability, three-fold cross-validation is carried out over three disjoint
partitions of the original dataset, followed by further nested cross-validation within each fold [5].
This results in a total of nine unique train and test sets. For each of these training sets, a linear SVM
is trained to discriminate between decoys and positive-labeled targets. At the end of each iteration,
the separately learned SVM parameters are then merged and used to recalibrate all PSM scores. This
process is repeated for a user-specified number of iterations (ten by default).

While this semi-supervised algorithm is robust in practice and widely used throughout the proteomics
community, it is also computationally intensive as analysis time is dominated by the iterative training
of many SVMs. To combat the extensive Percolator analysis times required of regularly conducted
large-scale protein studies, recent work [9] updated Percolator’s original SVM solver (called L2-
SVM-MFN [13]) to the Trust Region Newton (TRON) algorithm [16], the state-of-the-art solver
used in the popular machine learning packages LIBLINEAR [2] and scikit-learn [18]. TRON was
optimized within Percolator to utilize multithreading on shared-memory systems and demonstrated to
decrease total SVM training time on datasets of several million PSMs. Most importantly, TRON was
shown to speedup Percolator without affecting learned SVM parameters, unlike recently proposed
random-subsampling approaches [17].

3 Trust Region Newton for Primal SVM Learning

Consider feature vectors xi ∈ IRn, i = 1, . . . , l and label vector y ∈ {−1, 1}l . LetX = [x1 . . .xl]
T ,

1 denote the indicator function, and ∗ denote element-by-element vector multiplication. For vec-
tors, index-set subscripts denote subvectors and for matrices, pairs of index-set subscripts denote
submatrices.

2



The L2-regularized, L2-SVM primal objective function, which we wish to minimize w.r.t. w, is

f(w) =
1

2
wTw + C

l∑
i=1

(max(0, 1− yiwTxi))
2, (1)

the gradient of which is∇f(w) = w+ 2CXT
I,:(XI,:w−yI), where I ≡ {i|1− yiwTxi > 0} is an

index set and the operator : denotes all elements along the corresponding dimension (i.e., all columns
in this case). The generalized Hessian of f(w) [13] is ∇2f(w) = I + 2CXTDX, where I is the
identity matrix and D is a diagonal matrix with elements Dii = 1i∈I .

Algorithm 1 TRON for L2-SVMs

1: Given w, ∆, and σ0
2: while Not converged do
3: Find d in Equation 2 using a conjugate gradient procedure
4: Calculate σ = f(w+d)−f(w)

q(d)

5: if σ > σ0 then w ← w + d, increase trust region ∆.
6: else Shrink ∆.
7: end if
8: end while

The TRON algorithm is detailed in Algorithm 1. At each iteration, given the current parameters w and
trust region interval ∆, TRON considers the following quadratic approximation to f(w +d)− f(w),
q(d) = ∇f(w)Td + 1

2d
T∇2f(w)d, to find a truncated Newton step confined in the trust region by

solving

min
d
q(d) s.t. ‖d‖2 ≤ ∆. (2)

If q(d) is close to f(w+d)−f(w), w is updated to w+d and the trust region interval is increased for
the subsequent iteration. Otherwise, w remains unchanged and the trust region interval is shrunk. The
conjugate gradient method used to solve Equation 2 involves only a single Hessian-vector product, the
structure of which is exploited to avoid loading the entire Hessian into memory; owing to the diagonal
form of D, we have ∇2f(w) = I + 2CXT

I,:DI,IXI,:. Thus, for a vector v, the Hessian-vector
product computed during conjugate gradient descent is ∇2f(w)v = v + 2CXT

I,:(DI,I(XI,:v)) ,
and the algorithm is very efficient overall.

3.1 TRON Implementations

Due to the special forms of the gradient and generalized Hessian (in particular, the derivation and use
of I throughout the algorithm), computation in TRON heavily relies on random access. This naturally
allows efficient design of the algorithm on a shared-memory, multicore system. As detailed in [14]
(and utilized within Percolator in [9]) the computation of f(w), ∇f(w), and ∇2f(w)v may be
efficiently computed across multiple parallel threads using OpenMP. While efficient for multicore
architectures, the non-contiguous nature of the algorithm (i.e., I is recomputed every iteration) make
designing an efficient GPU implementation far less straightforward; for GPU computing, device-side
computation performs best over contiguous memory. Furthermore, large memory transfers between
host (i.e., CPU) and device (i.e., GPU) are expensive, hindering approaches where I is first computed
then a randomly accessed subset of the data is formed on the host and transferred to the device.

We present two efficient GPU implementations of TRON with complimentary strengths and weak-
nesses. Written in CUDA, both implementations first load X and y onto the device and, at the start
of each iteration, transfer w from host to device. Both solvers also make distinct use of the insight
that, on the device-side, prior to computing f(w) in each iteration, I may be computed and stored
in device memory for future compute. The major operations of each solver are listed in Table 1.
The mixed architecture solver, TRON CPU+GPU, utilizes the GPU for heavy lifting before using
multithreading for efficient random access after I is computed, utilizes less device-side memory but
requires several large data transfers between host and device. The GPU-optimized solver, TRON
GPU, performs all intensive computing on the GPU with very few transactions between host and
device (only two small transfers from device to host), at the cost of higher device-side memory to
compute and store XI,: every iteration.

3



TRON CPU+GPU TRON GPU
z = y ∗ (Xw) is calculated on the device, then copied
to the host

z = y ∗ (Xw) is calculated on the device

I = {i : zi < 1} is calculated on the device transferred
to the host. The transfer is interleaved with the device-
side computation of f(w) = 1

2
wTw + C

∑l
i=1(1 −

zi > 0)2

I is calculated on the device, then f(w) is computed on
the device while the host runs independent, sequential
operations

g(w) = ∇f(w) is computed using multithreading as

g(w) =w + 2CXT
I,:(XI,:w − yI)

=w + 2CXT
I,:(zI ∗ yI − yI)

=w + 2C
∑
i∈I

yi(zi − 1)xi.

On the device, ẑ = yI ∗ (zI − 1) and X̂ = XI,:

are computed and stored in device memory. g(w) =

∇f(w) is then computed as g(w) = w+2CX̂T ẑ and
transferred to the host.

Using multithreading, the Hessian-product is cal-
culated on the host as ∇2f(w)v = v +
2CXT

I,:(DI,I(XI,:v)) = v + 2C
∑

i∈I(x
T
i v)xi

The Hessian-product is computed on the device as
∇2f(w)v = v + 2CX̂T (X̂v) and transferred to the
host

Table 1: Major operations of the TRON solvers designed for GPU compute.

8 16 24 32 40 48
1

2

3

4

5

6

7

Utilized threads

M
ul

tip
lic

at
iv

e 
fa

ct
or

 o
f s

pe
ed

up

TRON GPU
TRON CPU+GPU
TRON CPU
L2-SVM-MFN

Figure 1: Factor of speedup for SVM learning in Percolator, calculated as the original Percolator
SVM learning time divided by the sped up learning time. The x-axis displays the number of threads
utilized by multithreaded methods “L2-SVM-MFN,” “TRON CPU,” and “TRON CPU+GPU.”

4 Results and Discussion
All experiments were run on a dual Intel Xeon Gold 5118 compute node with 48 computational
threads, an NVIDIA Tesla V100 GPU, and 768 GB of memory. The large-scale dataset evaluated is a
larger version of the Kim dataset used in [9] consisting of 23,330,311 PSMs. The GPU optimized
TRON solvers are compared against the multithread-optimized versions of TRON and L2-SVM-MFN
from [9]. All multithreaded solvers were tested using 8, 16, 24, 32, and 48 threads. As in [9], to
effectively measure the runtime of multithreaded methods without any excess thread-scheduling
overhead, parallelization of Percolator’s outermost cross-validation was disabled. Reported runtimes
are the minimum wall-clock times measured over five runs. The original Percolator SVM learning
runtime (collected using Percolator v3.02.0) was 14.4 hours. The results are illustrated in Figure 1.

Both GPU solvers greatly accelerate Percolator SVM learning time, with TRON CPU+GPU and
TRON GPU completing 6.6 (for 48 threads) and 7.4 times faster than Percolator’s current SVM
learning engine. Compared to its purely multithreaded counterpart TRON CPU, TRON CPU+GPU
offers significantly better performance at low numbers of utilized threads. While TRON GPU
offers the best performance overall and the slight memory overhead of the algorithm was nowhere
near restrictive on the tested GPU, TRON CPU+GPU offers significant runtime gains for compute
environments with more restrictive GPU memory constraints. In future work, the runtime benefits of
the presented GPU-optimized solvers will be further evaluated over other large/massive-scale datasets
and the memory footprints (on both host and device) will be carefully analyzed.

4



References
[1] M. Brosch, L. Yu, T. Hubbard, and J. Choudhary. Accurate and sensitive peptide identification

with Mascot Percolator. J. Proteome Res., 8(6):3176–3181, 2009.

[2] Rong-En Fan, Kai-Wei Chang, Cho-Jui Hsieh, Xiang-Rui Wang, and Chih-Jen Lin. Liblinear: A
library for large linear classification. Journal of machine learning research, 9(Aug):1871–1874,
2008.

[3] Siegfried Gessulat, Tobias Schmidt, Daniel Paul Zolg, Patroklos Samaras, Karsten Schnatbaum,
Johannes Zerweck, Tobias Knaute, Julia Rechenberger, Bernard Delanghe, Andreas Huhmer,
et al. Prosit: proteome-wide prediction of peptide tandem mass spectra by deep learning. Nature
methods, 16(6):509, 2019.

[4] Viktor Granholm, Sangtae Kim, Jose CF Navarro, Erik Sjolund, Richard D Smith, and Lukas
Kall. Fast and accurate database searches with ms-gf+ percolator. J. Proteome Res., pages
890–897, 2013.

[5] Viktor Granholm, William Stafford Noble, and Lukas Kall. A cross-validation scheme for
machine learning algorithms in shotgun proteomics. BMC bioinformatics, 13(16):S3, 2012.

[6] John T Halloran, Jeff A Bilmes, and William S Noble. Dynamic bayesian network for accurate
detection of peptides from tandem mass spectra. Journal of Proteome Research, 15(8):2749–
2759, 2016.

[7] John T Halloran and David M Rocke. Gradients of generative models for improved discrimina-
tive analysis of tandem mass spectra. In Advances in Neural Information Processing Systems,
pages 5728–5737, 2017.

[8] John T Halloran and David M Rocke. Learning concave conditional likelihood models for
improved analysis of tandem mass spectra. In Advances in Neural Information Processing
Systems, pages 5420–5430, 2018.

[9] John T Halloran and David M Rocke. A matter of time: Faster percolator analysis via efficient
svm learning for large-scale proteomics. Journal of proteome research, 17(5):1978–1982, 2018.

[10] J Jeffry Howbert and William S Noble. Computing exact p-values for a cross-correlation
shotgun proteomics score function. Molecular & Cellular Proteomics, pages mcp–O113, 2014.

[11] Chih-Yang Hsia, Ya Zhu, and Chih-Jen Lin. A study on trust region update rules in newton
methods for large-scale linear classification. In Asian Conference on Machine Learning, pages
33–48, 2017.

[12] L. Kall, J. Canterbury, J. Weston, W. S. Noble, and M. J. MacCoss. A semi-supervised machine
learning technique for peptide identification from shotgun proteomics datasets. Nat. Methods,
4:923–25, 2007.

[13] S Sathiya Keerthi and Dennis DeCoste. A modified finite newton method for fast solution of
large scale linear svms. Journal of Machine Learning Research, 6(Mar):341–361, 2005.

[14] Mu-Chu Lee, Wei-Lin Chiang, and Chih-Jen Lin. Fast matrix-vector multiplications for large-
scale logistic regression on shared-memory systems. In Data Mining (ICDM), 2015 IEEE
International Conference on, pages 835–840. IEEE, 2015.

[15] Andy Lin, J Jeffry Howbert, and William Stafford Noble. Combining high-resolution and exact
calibration to boost statistical power: A well-calibrated score function for high-resolution ms2
data. Journal of proteome research, 17(11):3644–3656, 2018.

[16] Chih-Jen Lin, Ruby C Weng, and S Sathiya Keerthi. Trust region newton method for large-scale
logistic regression. Journal of Machine Learning Research, 9(Apr):627–650, 2008.

[17] The Matthew, Michael J MacCoss, William S Noble, and Lukas Käll. Fast and accurate protein
false discovery rates on large-scale proteomics data sets with percolator 3.0. Journal of The
American Society for Mass Spectrometry, 27(11):1719–1727, 2016.

5



[18] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel,
P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher,
M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in Python. Journal of Machine
Learning Research, 12:2825–2830, 2011.

[19] M. Spivak and W. S. Noble. Learning score function parameters for improved spectrum
identification in tandem mass spectrometry experiments. J. Proteome Res., 11(9):4499–4508,
2012. PMC3436966.

[20] Chengjian Tu, Quanhu Sheng, Jun Li, Danjun Ma, Xiaomeng Shen, Xue Wang, Yu Shyr,
Zhengping Yi, and Jun Qu. Optimization of search engines and postprocessing approaches to
maximize peptide and protein identification for high-resolution mass data. Journal of proteome
research, 14(11):4662–4673, 2015.

[21] Bo Wen, Chaoqin Du, Guilin Li, Fawaz Ghali, Andrew R Jones, Lukas Käll, Shaohang Xu, Ruo
Zhou, Zhe Ren, Qiang Feng, et al. Ipeak: An open source tool to combine results from multiple
ms/ms search engines. Proteomics, 15(17):2916–2920, 2015.

[22] Mingguo Xu, Zhendong Li, and Liang Li. Combining percolator with x! tandem for accurate
and sensitive peptide identification. Journal of proteome research, 12(6):3026–3033, 2013.

6


	Introduction
	Semi-supervised SVM Learning for MS/MS Data using Percolator
	Trust Region Newton for Primal SVM Learning
	TRON Implementations

	Results and Discussion

