
Ledidi: Designing genomic edits that induce functional activity

Jacob Schreiber * 1 Yang Young Lu * 1 William Stafford Noble 1

Abstract

The development of modern genome editing tools
has enabled researchers to make edits with high
precision, but has left unsolved the problem of
designing these edits. We propose Ledidi, an ap-
proach that treats the design of genomic edits as
an optimization problem where the goal is to pro-
duce the desired output from a predictive model.
The discrete nature of biological sequences makes
direct optimization challenging, but we overcome
this by using the Gumbel-Softmax reparameter-
ization trick. We validate Ledidi by pairing it
with the Basenji model and designing edits that
affect CTCF binding and induce cell type-specific
binding of JUND.

1. Introduction
Recent advances in genome editing, driven by the discovery
and development of the CRISPR-Cas9 system, have signif-
icantly reduced the cost of precisely modifying genomic
sequence within living cells (Adli, 2018). Consequently,
genome editing is now routinely used in a variety of con-
texts, including engineering crops (Arora & Narula, 2017),
development of theraupeutics (Behan et al., 2019; Szlachta
et al., 2018), and scientific investigation (Hsu et al., 2014).
One such area of scientific investigation involves linking
sequence elements to functional activity such as protein
binding, chromatin accessibility, and transcription.

Although scientists use genome editing methods to great
effect, these methods face several challenges. The first is
the difficulty in knowing precisely what edits will yield a
desired effect. A second challenge is that the editing pro-
cess sometimes produces unintended consequences. For
instance, deleting a protein binding site will likely affect
protein binding, but it may also inadvertantly influence chro-
matin accessibility or transcription. Even small changes in
the sequence of the genome can cause major effects.

*Equal contribution 1Department of Genome Science, Univer-
sity of Washington, Seattle, USA. Correspondence to: William
Stafford Noble <william-noble@uw.edu>.

Understanding the effects that small modifications, even
single-nucleotide variants, have on functional profiles has
been phrased as a supervised machine learning task. In this
formulation, the input to a model is a window of nucleotide
sequence and the output is the signal from a panel of func-
tional assays. A recent model, Basenji (Kelley et al., 2018),
predicts fold-change signal from ChIP-seq, DNase-seq, and
CAGE experiments, across > 131 kb of sequence at a res-
olution of 128 bp. These models can quickly predict the
effect of mutations and other genomic alterations on bio-
chemical activity in a given region, but require searching
through an exponential number of combinations to find the
best set of edits that yield a desired outcome.

Several approaches have since been proposed for quickly de-
signing biological sequences that exhibit desired character-
istics. These methods generally consist of two components:
a generation step that produces sequences and an oracle,
i.e. a model that can quickly evaluate the quality of each
proposed sequence. One such method, deep exploration net-
works (Linder et al., 2019), involves a pair of networks that
generate and evaluate sequences in a fashion similar to that
of a generative adversarial network. The method achieves
diversity by penalizing the generation of similar pairs of se-
quences. An alternate approach relaxes the requirement that
the oracle be differentiable through the use of an adaptive
sampling method that is based on parametric conditional
density estimation (Brookes et al., 2019). A third approach,
the encoder-decoder-analyzer model (Gupta & Kundaje,
2019), involves the training of three neural networks to en-
code the sequence, decode the sequence, and perturb the
internal latent state such that the resulting sequence exhibits
the desired characteristics.

We propose a method, named Ledidi, for designing edits
that induce a desired functional landscape. Ledidi phrases
the design task as an optimization problem where the goal is
to identify a set of edits that results in the desired functional
profiles. Similar to previous methods, Ledidi relies on an
oracle, but this oracle can be any pre-trained machine learn-
ing model. We chose Basenji because the model provides
a detailed output and, thus, fine-grained design over the
design process. A difficulty in this optimization problem is
that genomic sequence is discrete; however, we overcome
this difficulty by using the Gumbel-Softmax reparameteriza-
tion trick (Jang et al., 2016) that enables standard gradient

Designing genome edits

descent methods to be used on discrete inputs. An important
distinction between Ledidi and the works of Linder et al.
(2019) and Brookes et al. (2019) is that Ledidi does not
design entire sequences but rather a small set of edits, and
in contrast to the work of Gupta & Kundaje (2019), Ledidi
does not involve training a new model.

2. Methods
Ledidi aims to design a small set of edits that change the
output of a pre-trained model in a desired manner. Thus,
Ledidi optimizes an objective function that is a mixture of
two terms: the first term is the distance between the original
sequence and the proposed edited sequence (the sequence
loss), and the second term is the distance between the model
output using the edited sequence and the desired output (the
functional loss). More formally, the original sequence is
X0 ∈ {0, 1}n×d, where n is the length of the sequence
and d is the size of the alphabet; the edited sequence is
X ∈ {0, 1}n×d; the model output using the edited sequence
is f(X) ∈ Rk×l, where k is the size of the output sequence
and l is the number of output measurements per position,
and the desired output ŷ ∈ Rk×l. The objective function for
this optimization is

min
X
||X −X0||1 + λ||f(X)− ŷ||22 (1)

The second term is weighted by λ to either encourage a
small number of edits when small or a closer match to the
desired output when large. Unfortunately, Equation 1 is
difficult to optimize directly because X is discrete.

We overcome this optimization difficulty using the Gumbel-
Softmax reparameterization trick (Jang et al., 2016). This
trick involves replacing each one-hot encoding in X with a
continuous representation W ∈ Rn×d. W can be converted
to a categorical distribution g(W) by

g(Wij) =
(exp(Wij + z)/τ)∑d

j′=1 exp((Wij′ + z)/τ)
(2)

where W is initially set to X0 and z is a random sample
drawn from Gumbel(0, 1). The random sample z provides
theoretical benefits as described in Jang et al. (2016). The
function g(W) is parameterized by a positive temperature,
τ , that controls how close to a discrete representation the
Gumbel-Softmax distribution is. As τ approaches 0, g(Wij)
smoothly approaches the discrete distribution {0, 1} and
as τ approaches infinity, g(Wij) approaches the uniform
distribution.

A discrete sequence X can be recovered from g(W) using
a simple argmax operation.

Xij =

{
1 if j = argmax

k
Wik

0 otherwise

With this new variable W , we can solve an alternative form
of Equation 1:

min
W
||g(W)−X0||1 + λ||f(g(W))− ŷ||22 (3)

Equation 3 can be solved by standard gradient descent meth-
ods. In this work, we use Nesterov’s accelerated gradient
descent (Nesterov, 1983) with a maximum number of itera-
tions of 100 and a patience of 10.

While Ledidi is general purpose enough to work with any
model and sequence size, we chose to use Basenji (Kelley
et al., 2018). Basenji takes X0 ∈ {0, 1}131,072×4 as input,
performs deep neural network operations f , and predicts the
functional profile f(X0) ∈ R1,024×5,313.

In our experiments we focused on designing edits that affect
only a subset of the functional profiles predicted by Basenji.
Accordingly, we define a mask M ∈ {0, 1}1,024×5,313 that
is applied elementwise to the loss, giving the final objective

min
W
||g(W)−X0||1 + λ||M ◦ (f(g(W))− ŷ) ||22 (4)

During the optimization process differences arise between
the loss calculated using g(W) and X as input to the model:
specifically, g(W) may yield more accurate functional pro-
files than the corresponding discretized sequenceX because
g(W) is directly optimized. Further, due to the stochastic
nature of the Gumbel sampling process, we found that fre-
quently the best sequence was found midway through the
optimization process. We mitigate these issues by optimiz-
ing the objective function given in Equation 4 normally but
returning the X that gave the smallest loss at any point.

3. Results
3.1. CTCF binding can be deleted and induced

Our first evaluation of Ledidi involved designing edits that
delete or induce binding of the CTCF protein. CTCF has
two properties that make it an ideal candidate for an initial
evaluation: first, the protein binds tightly to a known motif,
and second, this binding generally occurs at similar loci
across cell types. These two factors indicate a strong con-
nection between genomic sequence and functional activity.

For this evaluation, we identified 53 high confidence (q-
value < 0.01) CTCF motif sites across the human genome
(build hg38) using the motif scanning tool FIMO (Grant
et al., 2011). We obtained Basenji’s predictions by running
∼ 131kb sequences centered around these 53 sites to get pre-
dictions of CTCF binding in the cell line GM12878. Next,
we constructed our desired CTCF profiles for knock-out ex-
periments by zeroing out the predicted fold-change values
for CTCF from Basenji in a window of ±25 positions sur-
rounding the motif (Fig 1A), and for knock-in experiments
by copying the peak in that window to 6.4 kb upstream.

Designing genome edits

0.0
1 3 5 7 9 11 13 15 17 19

0.5

1.0

1.5

2.0

Bi
ts

Ed
it
Co
un
t

480 500 520 540 560 580 600
0

100

480 500 520 540 560 580 600
0

100
Specified

Original

GM12878 CTCF Signal
A B

C

D

E

F

G

P
re
di
ct
ed
S
ig
na
l

Genomic Position
480 500 520 540 560 580 600
0

100
Found

0 25 50 75 100
Original Signal

0

20

40

N
ew

S
ig
na
l

20

40

60

80

100

N
ew

S
ig
na
l

Knock-in Signal

5.0

0.0

5.0

10.0 Forward

Backward

60

80

100
Knock-out Signal

0 25 50 75 100
Original Signal

0

10210 -2

10 -2

106 1010

101S
eq
ue
nc
e
Lo
ss

Knock-out
Knock-in

0.0

2.5

5.0

7.5

10.0

12.5

Fu
nc
tio
na
lL
os
s

103

102 106 1010

105

Figure 1. Editing CTCF motif sites. (A) Ledidi takes as input the initial sequence (not shown) and the desired signal. The output is the
edited sequence (not shown) and the predicted signal for that sequence. (B) The sequence loss (the first term in Equation 1) averaged over
all 53 loci for different values of λ on CTCF knock-outs and knock-ins. (C) Similar to B, except displaying the functional loss (the second
term in Equation 1). (D) The CTCF motif and (E) the distribution of edits proposed by Ledidi when knocking out CTCF peaks, corrected
for the motif occuring on the forward or reverse strands. (F) The original signal of each of the 53 regions and the new signal arising from
Ledidi’s edits when knocking out a peak. (G) Similar to F except for inducing a peak.

We began by quantifying the effect that changing Ledidi’s
mixing parameter λ has on the proposed set of edits. We ran
Ledidi using the 53 extracted sequences and desired knock-
out/knock-in CTCF profiles using the default parameters
of τ = 3 and a learning rate of 10−3 but varied λ from
0.1 to 1010. When we plotted the average sequence loss
(i.e., the number of edits) and functional loss of the returned
sequences we observed that increasing λ led to a larger set
of proposed edits (Fig 1B) but a more complicated curve
in the functional loss (Fig 1C) for both tasks. The smaller
number of edits made in the first dip of the functional loss
suggests that these sequences were designed by making a
small number of targeted changes, whereas the second dip
in the functional loss corresponds to the trivial solution of
redesigning large portions of the input sequence. Potentially,
the increase in loss between the two dips corresponds to the
boundary between these two regimes.

Guided by the results of the hyperparameter sweep, we fo-
cused on the knock-outs designed when using a λ of 10. On
average, Ledidi proposed 3.04 edits per locus, with between
1 and 10 edits proposed per locus and 106 of the 161 to-
tal edits occuring within the CTCF motif that the window
was centered on. These edits, which occured primarily on
the most conserved nucleotides in the CTCF motif on both
strands (Fig 1D/E), reduced the maximum signal within the
window from a median fold-change of 74.2 to 5.2, and all
loci exhibited diminished signal (Fig 1G).

Next, we examined the edits designed to induce CTCF bind-
ing (Fig 1G) when using a λ of 316, a setting that exhibited
good performance in the hyperparameter sweep. Encour-
agingly, these edits increased the maximum CTCF signal

at the target from a median predicted fold change of 2.4
to 63.7. We found that 14 loci did not exhibit increased
CTCF binding, potentially because editing a motif into a
sequence is a more challenging requirement that disrupting
an existing one.

3.2. JUND binding can be deleted in a
biosample-specific manner

Although our CTCF experiments served as a useful initial
validation of Ledidi, a more compelling use case is when
reasonable edits to produce an outcome are not known in
advance. Thus, we next turned to the more challenging task
of inducing cell type-specific protein binding. The protein
JUND is a good target for this task because JUND has been
shown to recognize different sequence motifs in different
cell types (Arvey et al., 2012), potentially due to interactions
with different sets of co-factors.

In this evaluation, we used Ledidi to knock out the bind-
ing of JUND in h1-hESC while preserving its binding in
GM12878 at sites where JUND normally binds in both cell
types. We extracted the sequence surrounding 23 sites, one
from each chromosome except chrY, where each site was
the location of the strongest corresponding ChIP-seq signal
p-value signal added over both cell types for JUND. Ac-
cordingly, we zeroed-out the central peak for h1-hESC but
retained the peak in GM12878 (Fig 2A).

Intriguingly, we found that Ledidi was capable of perform-
ing this knock-out with relative ease. In an initial example,
Ledidi is able to design a sequence that exhibits no binding
in h1-hESC while preserving the binding in GM12878, as

Designing genome edits

0

5

10

N
ew

JU
N
D
S
ig
na
l

0 20000 40000 60000 80000 100000 120000
Genomic Position

0

500

1000

1500

2000

2500

3000

E
di
tC

ou
nt

A B C D

20

0

20

20

0

20

h1-hESC

Original Predicted Signal Edited Predicted Signal

GM12878

h1-hESC

GM12878

0

0

0 5 10 15 20 25
Original JUND Signal

15

20

25
h1-hESC
GM12878

Figure 2. Editing JUND binding in two cell types. (A) An example of the original JUND signal predicted by the Basenji model. A
shaded grey box indicates the region that is zeroed out in h1-hESC. (B) The resulting predicted signal after the sequence is edited by
Ledidi, with the same region shaded. (C) The maximum signal value for h1-hESC and GM12878 in the region that was zeroed out in
h1-hESC, showing the change in signal after the sequence was edited. (D) A histogram over the relative positions of the input locus to
Basenji where the edits are made.

well as preserving the nearby binding in both cell types
(Fig 2B). When we comprehensively applied Ledidi to the
23 loci, we found that the edited sequences exhibit reduced
signal in h1-hESC, from a median of 13.2 to 5.6, but similar
signal in GM12878, from a median of 9.9 to 9.5. Notably, to
achieve good performance on this task, we had to change the
hyperparameters of Ledidi: we set the learning rate to 10−6,
the maximum number of iterations to 1,000, τ to 2, and
λ to 105. In contrast to eliminating CTCF binding, which
took only a few edits per locus, designing edits that induce
biosample specific binding of JUND required a median of
397 edits per locus, indicating that it was a more challenging
task. Encouragingly, these edits occured primarily in the
region that was being perturbed (Fig 2C).

4. Discussion
In this work we propose Ledidi, a method for designing edits
to a discrete input sequence that result in a desired change
in model output. We first demonstrate that Ledidi works by
successfully designing genomic edits that induce and delete
CTCF binding. Then, we successfully apply Ledidi to the
more challenging task of inducing cell type-specific binding
of JUND, a protein that is known to bind at different loci
in different cell types. These examples provide empirical
evidence for the usefulness of Ledidi.

Although Ledidi generally achieved reasonable results, we
observed that the hyperparameters had to be changed as
the tasks became more complex. As expected, we found
that increasing λ with the number of edits anticipated for
successful design was important, and that decreasing the
learning rate could lead to more accurate outputs that also
required fewer edits, but had the drawback of (sometimes
dramatically) increasing runtime. We determined that a
good strategy was to initially begin with a large λ and then
decrease both the learning rate and λ in successive optimiza-
tion runs to find a compact set of edits. Finding ways of

automatically tuning these hyperparameters, such as through
annealing schedules, will likely be important for out-of-the-
box use of Ledidi by non-specialists.

Ledidi has a few limitations. First, Ledidi cannot currently
propose sequence insertions or deletions. Second, any defi-
ciencies in the oracle that Ledidi uses will propogate into the
proposed edits. For instance, we observed that the Basenji
model did not predict a significant difference between the
binding of MYC and MAX, despite subtle but known differ-
ences in their binding motifs (Allevato et al., 2017). Finally,
the speed of Ledidi is limited by the inference step of the
oracle. The same complexity that made Basenji an accurate
model also makes the inference step longer. Using a GTX
2080 Ti GPU, the design process took up to a minute for
simple deletions and several minutes for more complex ed-
its. Fortunately, the second and third limitations can both
be overcome by using a small model tuned for the relevant
phenomena.

It is worth mentioning that Ledidi relies on the general-
ization capabilities of the oracle that is being used. When
the oracle generalizes well, edited sequences can be easily
validated and those sequences that do not yield the desired
change, potentially because of an issue during optimization
or because the desired change is impossible, can be flagged.
However, when the oracle does not generalize well, Ledidi
is likely to propose edits that do not, in reality, induce the
desired activity. Therefore, an important area of future work
is detecting when Ledidi is proposing edits that are out-of-
distribution (Bulusu et al., 2020) for the oracle that is being
used.

We have made our code available at https://github.
com/jmschrei/ledidi.

https://github.com/jmschrei/ledidi
https://github.com/jmschrei/ledidi

Designing genome edits

References
Adli, M. The CRISPR tool kit for genome editing and

beyond. Nature Communications, 9(1911), 2018.

Allevato, M., Bolotin, E., Grossman, M., Mane-Padros, D.,
Sladek, F. M., and Martinez, E. Sequence-specific DNA
binding by MYC/MAX to low-affinity non-e-box motifs.
PLoS One, 12(7):e0180147, 2017.

Arora, L. and Narula, A. Gene editing and crop improve-
ment using CRISPR-Cas9 system. Front Plant Sci., 8
(1932), 2017.

Arvey, A., Agius, P., Noble, W. S., and Leslie, C. Sequence
and chromatin determinants of cell-type specific transcrip-
tion factor binding. Genome Research, 22(9):1723–1734,
2012.

Behan, F. M., Iorio, F., and et al., G. P. Prioritization of
cancer therapeutic targets using CRISPR-Cas9 screens.
Nature, 568:511–516, 2019.

Brookes, D. H., Park, H., and Listgarten, J. Conditioning by
adaptive sampling for robust design. In Proceedings of
the 36th International Conference on Machine Learning,
volume 97, pp. 773–782, 2019.

Bulusu, S., Kailkhura, B., Li, B., Varshney, P. K., and Song,
D. Anomalous instance detection in deep learning: a
survey. arXiv, 2020.

Grant, C. E., Bailey, T. L., and Noble, W. S. FIMO: Scan-
ning for occurrences of a given motif. Bioinformatics, 27
(7):1017–1018, 2011.

Gupta, A. and Kundaje, A. Targeted optimization of regu-
latory DNA sequences with neural editing architectures.
biorXiv, 2019.

Hsu, P. D., Lander, E. S., and Zhang, F. Development and
applications of CRISPR-Cas9 for genome engineering.
Cell, 157(6):1262–1278, 2014.

Jang, E., Gu, S., and Poole, B. Categorical repa-
rameterization with Gumbel-Softmax. arXiv, 2016.
arXiv:1611.01144.

Kelley, D., Reshef, Y., Bileschi, M., Belanger, D., McLean,
C., and Snoek, J. Sequential regulatory activity prediction
across chromosomes with convolutional neural networks.
Genome Research, 2018.

Linder, J., Bogard, N., Rosenberg, A. B., and Seelig,
G. Deep exploration networks for rapid engineer-
ing of functional DNA sequences. bioRxiv, 2019.
https://www.biorxiv.org/content/10.1101/864363v1.

Nesterov, Y. A method for solving a convex programming
problem with convergence rate o(1/k2). Soviet Mathe-
matics Doklady, 27:372–376, 1983.

Szlachta, K., Kuscu, C., and et al., T. T. CRISPR knockout
screening identifies combinatorial drug targets in pancre-
atic cancer and models cellular drug response. Nature
Communications, 9(4275), 2018.

