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Abstract

We propose HiC2Self, a self-supervised method for denoising Hi-C contact maps1

that needs only low coverage data for training and imputes high coverage interaction2

count data that can be used for downstream analyses. Using a self-denoising3

framework based on Noise2Self, we designed a unique mask structure tailored4

for Hi-C contact maps and adopted a negative binomial loss function in order to5

directly process the raw count matrix without additional normalization or recovery6

steps. We found our self-supervised method was competitive with or outperformed7

existing supervised Hi-C denoising algorithms while providing greater ease of use.8

1 Introduction9

Hi-C is a genome-wide chromatin conformation capture assay that is used to study 3D genomic10

organization. Hi-C paired-end sequencing data produces a contact matrix between genomic bins11

that reveals principles of chromatin folding at resolutions, such as A/B compartments when data12

is binned at megabase scale and topologically associating domains (TADs) for 10-50kb bins (1).13

Intra-chromosomal Hi-C contact maps are usually visualized by a symmetric heatmap, where x and14

y coordinates indicate genomic locations along the chromosome, and each pixel shows the strength15

of chromatin interaction (normalized read count) between the corresponding bins. High-resolution16

Hi-C contact maps require generation of multiple replicate libraries and extremely high sequencing17

coverage (1-2B reads), incurring considerable costs. Contact maps generated from libraries with only18

shallow sequencing have high noise due to sparsity.19

Given the success of deep learning technology for image denoising and super-resolution, several20

groups have designed supervised deep learning models to "denoise" Hi-C contact maps. HiCPlus21

(2) and HiCNN (3) use convolutional neural networks to predict high coverage 2D contact maps22

from low coverage or downsampled contact maps in the same cell type. hicGAN (4), DeepHiC (5)23

and HiCSR (6) all use generative adversarial networks (GAN) to impute high resolution data, with24

DeepHiC and HiCSR employing loss functions specifically tailored to Hi-C data. These supervised25

approaches all require paired low-/high-coverage Hi-C data to train the model, which can then be26

applied to other cell types where only low-coverage data are available. Existing approaches also27

normalize and preprocess Hi-C input data to fit the training framework, which typically requires an28

additional post-prediction recovery procedure to reconstruct a genome-wide matrix for downstream29

analysis.30

In this study, we present HiC2Self, a self-supervised Hi-C denoising model that only requires31

low-coverage Hi-C data for training and can be applied directly to raw count matrices without32

normalization steps. The self-supervision framework is based on Noise2Self (7), with a mask33

structure and negative-binomial loss function designed for Hi-C raw count matrices.34

2 Method35

Data Preparation High coverage Hi-C data sets are generated by sequencing multiple libraries and36

aggregating read counts across libraries. To obtain low-coverage Hi-C training data, we generated a37

contact map from a single library and evaluated performance against the aggregated multi-library38

map. Intra-chromosomal Hi-C raw count contact maps were generated without normalization. For39

each chromosome in the low-coverage dataset, we further extracted equal-sized square submatrices40



along the diagonal, representing genomic interactions up to 1Mb in linear distance. These symmetric41

submatrices X are used as the training set for our model.42

Self-supervision framework Noise2Self (7) is a self-supervised denoising framework that uses43

J -invariant functions f , where J represents a partition of the input data dimensions m into subsets,44

and we consider a subset J ∈ J and its complement JC . Given an unseen clean signal y ∈ Rm, we45

assume that x is a mean-zero noisy observation, where E[x|y] = y. For any fixed subset J , we further46

assume that a noisy observation on subdimension xJ is independent of the one on its complement47

xJC given y. With these two assumptions, a function f : Rm → Rm is defined as J -invariant if48

f(x)J is independent of xJ for every J ∈ J .49

The ordinary denoising loss function is defined as50

Lf = Ex,y||f(x)− y||2 = Ex||f(x)− x||2 + ||x− y||2 − 2〈f(x)− x, x− y〉

which is the sum of a self-supervised loss and the variance of the noise. With a J-invariant function51

f and the previous assumptions, this simplifies to52

L(f) =
∑
J∈J

E||fJ(xJC )− xJ ||2

so that the denoising function f can be optimized using only noisy observations x.53

The J -invariance property is realized using masks. We denote the masked area as xJ and the54

unmasked area as xJC . Given the symmetric nature of Hi-C contact maps and the requirement that55

xJ ⊥⊥ xJC |y, we designed masks that are symmetric with respect to the diagonal.56

The training framework is shown in Figure 1A.57

Figure 1: Training framework and model architecture

Model architecture HiC2Self uses a simple convolutional neural network (CNN), as shown in58

Figure 1B. Within the model, raw count input matrices X were first log2-transformed (X ′ =59

log2(XJC + 1)) in order to guarantee numerical stability for subsequent steps.60

Singular value decomposition (SVD) and low-rank reconstruction is a classic approach for 2D image61

compression and denoising. In order to enhance the signal extracted from low-coverage submatrices,62

we performed SVD on the log2-transformed matrices X ′ = UΣUT , generated reconstructions63

X ′
k =

∑k
i=1 uiΣiu

T
i using the top k eigenvectors, k ∈ [1, 4], and concatenated these matrices with64

X ′ as additional input channels for the CNN.65

The convolutional part of the model consists of five equal-sized convolutional layers, where each of66

the first three layers is followed by ReLU activation functions (see Table 1). An exponential function67

was used as the activation function for layer 4 and 5 in order to transform output values back into raw68

count space.69
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Layer Type Filter input output input output Activation
size dimension dimension channels channels function

1 Convolution 5 × 5 100 × 100 100 × 100 5 64 ReLU
2 Convolution 5 × 5 100 × 100 100 × 100 64 64 ReLU
3 Convolution 5 × 5 100 × 100 100 × 100 64 32 ReLU
4 Convolution 3 × 3 100 × 100 100 × 100 32 1 Exponential
5 Convolution 3 × 3 100 × 100 100 × 100 32 1 Exponential

Table 1: Structure of convolutional layers

Loss function Inspired by the deep count autoencoder (DCA) model for single cell data (8), we
used a negative binomial loss for the raw count matrices to train our model. We assume that count
from each bin (xij) of the contact map X follows a negative binomial distribution with parameters
µij and θij , xij ∼ NB(µij , θij). The loss function is defined as

L(f) = −logLNB =
∑

(logΓ(x+ 1) + logΓ(θ)− logΓ(x+ θ) + θlog(
µ+ θ

θ
) + xlog(

µ+ θ

µ
))

As shown in Figure 1B, HiC2Self outputs two channels, corresponding to µ and θ in the loss function70

above. We use µij , the expected value for each bin xij , as the predicted value for our denoising71

results.72

Genome-wide prediction HiC2Self produces denoised results as raw counts, which can easily be73

assembled into a whole-chromosome prediction. To do this, we extracted submatrices along the74

diagonal, consecutively striding by one bin each time. Denoised results were generated for each75

submatrix, and predicted counts for overlapping submatrices were averaged. The resulting predicted76

high coverage results were saved as a .hic file using Juicer tools (9) for downstream analysis.77

3 Experiments and Results78

Data HiC2Self was trained and evaluated on real low- and high-coverage Hi-C data as described79

above. Low-/high-coverage raw count matrices for the ENCODE GM12878 cell line were downloaded80

from GEO (GSE63525 (10)). A single low-coverage library (experiment HIC001) with 2.5M reads81

was used as low-coverage data to train the model, and pooled primary libraries with 3.5B reads82

(low/high ratio = 1/18) was used as high-coverage Hi-C data to evaluate model performance. Raw83

count data were downloaded in .hic format and further binned at 10kb resolution matrix using Juicer84

(9). Equal-sized (100× 100) submatrices were extracted along the diagonal from intra-chromosomal85

low-coverage Hi-C contact maps to train the model.86

Denoising on normalized data In order to validate our model framework and compare with87

previously published methods, we first trained our model (with necessary changes) using mean88

squared error on normalized data (log2-transformation followed by min/max rescaling to produce89

values between -1 and 1). The supervised model hicGAN was trained on 5,000 submatrices extracted90

from paired low-/high-coverage Hi-C data, with chromosome 3, 8, 12 held out for testing. We use91

Pearson correlation (per genomic distance) with high coverage data as the metric for evaluation and92

found comparable performance to hicGAN (Figure 2).93

Figure 2: Performance on log-transformed data
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Whole chromosome prediction Given the competitive performance on normalized data, we next94

trained our model with negative binomial loss on raw count data and produced predicted high coverage95

raw count contact maps. We generated denoised predictions within 1Mb distance from diagonal for96

chromosome 18 and multiplied by a scaling factor of 10 to increase the count range. The result was97

saved into .hic format and visualized using Juicebox (9) (Figure 3, color scale for the low-coverage98

matrix is 1/10 of the scale for denoised and high coverage matrices.)99

We again used Pearson correlation by genomic distance to evaluate model performance on log2100

transformed counts. For comparison, we downloaded another independent high-coverage pooled101

library GM12878 replicate with 3B reads. The correlation by genomic distance in Figure 3B show102

slightly better correlation than the biological replicate data.103

We also ran HiC-DC+ (12) to call significant 3D interactions (qvalue ≤ 0.05) on chromosome 18104

(Figure 3C) and obtained good overlap with interactions identified on high-resolution Hi-C data.105

Figure 3: Performance on raw count data

4 Discussion106

In this study, we developed HiC2Self, a self-supervised Hi-C contact map denoising model that107

achieves comparable performance with supervised Hi-C denoising methods without the requirement108

to train on paired low- and high-coverage data sets. Importantly, the model trains on unnormalized109

raw count data and produces high-coverage contact maps in count space, facilitating downstream110

analyses using Hi-C tools such as TAD and interaction callers.111

We compared HiC2Self (with necessary changes) with existing supervised methods for denoising112

normalized Hi-C contact matrices and also assessed the usefulness of denoised read count contact113

matrices for downstream analyses. Interestingly, we found that adding SVD reconstructions of114

low-coverage matrices as input channels led to improved performance, and indeed our self-supervised115

model was competitive with a state-of-the-art supervised denoising method. Potentially our SVD116

reconstruction channels might improve supervised approaches as well. In additional experiments117

(not described above), we found that the generalizability of supervised models depended strongly on118

matching the low-/high sequencing coverage relationship in training data to the test data. A mismatch119

between training and test sequencing coverage scenarios led to poor performance, suggesting some120

inflexibility in the model for generalization. Our self-supervised model avoids this challenge of121

generalization and showed robust performance across data sets. In the raw count space comparison,122

our model recovered a majority of the significant interactions identified by high-resolution Hi-C data,123

showing its capacity as a valid denoising tool for downstream analysis. We will continue working on124

the evaluation of model performance and analysis of results in future work.125
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