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Abstract
Association testing in genome-wide association
studies (GWAS) is often performed at either the
SNP level or the gene level. The two levels can
bring different insights into disease mechanisms.
In the present work, we provide a novel approach
based on nonlinear post-selection inference to
bridge the gap between them. Our approach se-
lects, within a gene, the SNPs or LD blocks most
associated with the phenotype, before testing their
combined effect. Both the selection and the as-
sociation testing are conducted nonlinearly. We
apply our tool to the study of BMI and its variation
in the UK BioBank. In this study, our approach
outperformed other gene-level association testing
tools, with the unique benefit of pinpointing the
causal SNPs.

1. Introduction
Lack of statistical power is a major limitation in GWAS. If
the analysis is performed at the SNP level, lack of statistical
power may stem from small effect sizes and linkage disequi-
librium, among others. By modeling the overall association
signal, gene level analysis can address this limitation. Be-
ing the functional entity, genes have the potential to shed
light on yet undiscovered biological and functional mech-
anisms. However, the incorporation of all mapped SNPs,
including non-causal ones, can mask the association signal.
An alternative strategy would be to select the SNPs most
associated with the phenotype within a given gene, and then
test their joint effect. If we do not account for the fact that
these SNPs were selected in a first step based on the same
data, their overall joint effect is likely to be overestimated.
Post-selection inference (PSI) (Lee et al., 2016) was specif-
ically developed to correct for selection bias. In addition,
such a framework would also benefit from the incorporation
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of nonlinearities to model epistatic interactions between
neighboring SNPs.

In previous work, we published the theoretical foundations
of kernelPSI, a post-selection inference (PSI) framework
for nonlinear variable selection (Slim et al., 2019). We
introduced quadratic kernel association scores, which are
quadratic forms of the response vector which can measure
nonlinear association between a group of features and the
response. Here, we extend kernelPSI to the demanding
setting of GWAS, where the kernel association scores can
model nonlinear effects and epistatic interactions among
neighboring SNPs. A number of putative loci are selected
in the first step according to a selected kernel association
score, and their aggregated phenotypic effect is tested in the
second step.

The extension of kernelPSI to GWAS required several modi-
fications to improve scalability. Most importantly, we devel-
oped a GPU-version of the constrained sampling algorithm
to speed up linear algebra operations. The rest of the code
was also accelerated thanks to a more efficient C++ backend.
In particular, we implemented a rapid estimator of the HSIC
criterion (Gretton et al., 2005) based on quadratic-time rank-
1 matrix multiplications. HSIC is an example of quadratic
kernel association scores (Slim et al., 2019). To illustrate
this extension of kernelPSI on real GWAS datasets, we study
BMI and its fluctuations (∆BMI) in the UK BioBank (By-
croft et al., 2018).

We propose an eponymous R package that implements the
full pipeline of kernelPSI. The CPU-only version is directly
available from CRAN. The enhanced GPU-version can be
downloaded from the development branch of the GitHub
repository https://github.com/EpiSlim/kernelPSI.git.

2. KernelPSI: post-selection inference for big
genomic data

Before covering the modifications we implemented to ex-
tend kernelPSI to GWAS data, we start with a brief overview
of the framework in the context of GWAS. For further de-
tails, we refer the reader to Slim et al. (2019).

We model a GWAS dataset as a set of n pairs
{(x1, y1), · · · , (xn, yn)}. For each sample i ∈ J1, nK,
yi ∈ R represents the phenotype and xi ∈ X p the geno-

https://github.com/EpiSlim/kernelPSI.git


Nonlinear post-selection inference for genome-wide association studies

type, with p the number of SNPs considered. In this study,
we define xi as a set of p SNPs mapped to a gene, and
X = {0, 1, 2} following the dosage encoding of SNPs. We
denote by Y ∈ Rn the vector of phenotypes, where Yi = yi
for i ∈ J1, nK. We further consider a partition of the geno-
type in a set of S contiguous SNP clusters {S1, · · · ,SS}
(see Section 2.2). For each t ∈ J1, SK, we define a kernel
Kt : {0, 1, 2}|St| × {0, 1, 2}|St| → R and the correspond-
ing Gram matrix Kt (see Section 2.3 for examples of such
kernels). For any i, j ∈ J1, nK, [Kt]ij = Kt(xi,St , xj,St),
where xi,St contains the values of the SNPs in St for sample
i, that is to say, xi restricted to its entries in St.

The goal is to select the SNP clusters, that is the kernels
within {K1, · · · ,KS}, most associated with the phenotype,
and then, to measure their overall association with the phe-
notype Y . In other words, we perform model selection
and measure afterwards the significance of the constructed
model.

In both selection and inference stages, a measure of associa-
tion between a kernel K and a phenotype Y is needed. For
this purpose, we define quadratic kernel association scores
which are quadratic forms in Y :

s : Rn×n × Rn → R
(K,Y ) 7→ Y >Q(K)Y,

(1)

for some mapping Q : Rn×n → Rn×n.

Quadratic kernel association scores encompass a wide
gamut of scores. For instance, empirical estimators of the
HSIC criterion. In the present paper, we restrict ourselves
to the unbiased empirical HSIC estimator, first proposed by
Song et al. (2007):

ĤSICunbiased(X,Y ) =
1

n(n− 3)

[
trace(K L)

+
1>nK1n 1>nL1n
(n− 1)(n− 2)

− 2

n− 2
1>nK L1n

]
,

(2)

where K = K − diag(K) and L = L− diag(L).

A multitude of kernel selection strategies can be deployed.
The kernels can be selected in a forward or backward step-
wise fashion. The number of selected kernels can be either
fixed, or adaptively determined. Here, we opt for an adap-
tive forward strategy, where the number of selected kernels
S′ is determined according to the maximum of ĤSICunbiased
attained by iteratively adding the kernels.

Regardless of the kernel selection strategy, the selection
of a subset of kernels M ⊆ K can be modeled as a con-
junction of quadratic constraints: there exists iM ∈ N, and
(QM,1, bM,1), · · · , (QM,iM , bM,iM ) ∈ Rn×n×R such that

{Y : M̂(Y ) = M} =

iM⋂
i=1

{Y : Y >QM,iY + bM,i ≥ 0}.

(3)

For valid inference, we need to correct for the fact that
the kernels were selected on the basis of their strong as-
sociation with the outcome Y . As determining the ex-
act distribution of HSICunbiased conditionally to the event
{Y : M̂(Y ) = M} was impossible, we developed instead
an efficient sampling algorithm to derive empirical p-values.
Replicates of the outcome Y which satisfy the quadratic
constraints in (3) are sampled. The values of their test statis-
tics (in this case, ĤSICunbiased) are then compared to the
value of the statistic of the original outcome Y to obtain the
desired p-values.

Step 1 : matrix-vector multiplication
QM,1

...
QM,iM


︸ ︷︷ ︸
∈ R(iM · n)×n

·

Y


︸ ︷︷ ︸
∈ Rn

=


QM,1Y

...
QM,iM

Y


︸ ︷︷ ︸
∈ RiM · n

Step 2 : reshaping into a row-major matrix
QM,1Y

...
QM,iM

Y


︸ ︷︷ ︸
∈ RiM · n

 


(QM,1Y )>

...

(QM,iM
Y )>


︸ ︷︷ ︸
∈ RiM × n

Step 3 : evaluation of the quadratic form
(QM,1Y )>

...

(QM,iM
Y )>


︸ ︷︷ ︸
∈ RiM × n

·

Y


︸ ︷︷ ︸
∈ Rn

+


bM,1

...
bM,iM


︸ ︷︷ ︸
∈ RiM

=


Y>QM,1Y + bM,1

...

Y>QM,iM
Y + bM,iM


︸ ︷︷ ︸

∈ RiM

Figure 1. A GPU-accelerated pipeline for the evaluation of
quadratic constraints.

2.1. Outcome normalization

Our original proposal in Slim et al. (2019) is limited to
normally-distributed outcomes. To expand kernelPSI to
other continuous outcomes, it suffices to transform any con-
tinuous outcome Y into a vector of independent normally-
distributed variables. A well-known transformation is the
Van der Waerden (1952) quantile transformation given by:

g(y) = F−10,1

(
rank(y)− 1/2

n+ 1

)
, (4)

where y ∈ R, rank(y) is the ranking of y in a descending
order with respect to y1, · · · , yn, and F0,1 is the c.d.f of the
standard normal distribution.
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2.2. Contiguous hierarchical clustering for genomic
regions

In GWAS, the true causal SNPs are often unmeasured, but
exhibit a strong linkage disequilibrium (LD) with the lead
SNPS. The classical strategy to approach this problem is fine
mapping (Schaid et al., 2018), where we study the genomic
region surrounding the lead SNPs to identify the causal
SNPs. A better strategy would then be to directly select
regions of strong LD patterns. This amounts to selecting
clusters of strongly-correlated SNPs. Such a strategy also
has the advantage of reducing the number of clusters/kernels
to choose from, while simultaneously modeling the com-
bined cluster effects on the outcome.

To define these clusters, we apply adjacent hierarchical
clustering (AHC). Following AHC, the optimal number of
clusters S is estimated using the gap statistic. This approach
is readily available from the R package BALD (Dehman
et al., 2015).

2.3. The IBS-kernels and nonlinear SNP selection

It is obviously possible to use linear kernels to define
{K1, · · · ,KS}. However, such a representation does not
take into account minor allele frequencies (MAFs) nor
epistatic interactions between SNPs. To address this limi-
tation, Wu et al. (2010) proposed identical-by-state (IBS)
kernels, which measure the number of identical alleles be-
tween two individuals i and j. For a cluster t and two
genotypes xi, xj , IBS kernels are given by:

Kt(xi,St , xj,St) =

|St|∑
q=1

wq(2−
∣∣∣[xi,St ]q − [xj,St ]q

∣∣∣), (5)

where the weights (wq)1:|St| are a function of their respec-
tive MAFs (mq)1:|St|:

√
wq = Beta (mq, αq, βq) , (6)

where Beta is the density function of the Beta distribution.

The parameterization (αq, βq)1:|St| is chosen according to
the scope of the GWAS study. For common variants, Ionita-
Laza et al. (2013) recommend setting (αq, βq) = (0.5, 0.5).

2.4. Efficient nonlinear post-selection inference for
high-dimensional data

In this section, we detail a number of modifications we
included in order to improve the scalability of kernelPSI to
the large sample sizes.

2.4.1. RAPID ESTIMATION OF THE HSIC CRITERION

We first recall the unbiased HSIC estimator in Equation (2):

ĤSICunbiased(X,Y ) =
1

n(n− 3)

[
trace(K L)

+
1>nK1n 1>nL1n
(n− 1)(n− 2)

− 2

n− 2
1>nK L1n

]
.

(7)

The computation of 1>nK1n and 1>nL1n can be performed
in quadratic timeO(n2). As for trace(K L) and 1>nK L1n,
aO(n3) complexity can ensue because of the matrix-matrix
multiplication of K and L. To avoid that, we decompose
trace(K L) as

∑n
i,j=1 [K]ij [L]ji, which results in a better

O(n2) complexity. The same complexity can be achieved
for the quadratic form 1>nK L1n by starting with the matrix-
vector multiplication of either K1n or L1n. Overall, we
achieve a O(n2) complexity, for which the HSIC criterion
can be computed on a single CPU for thousands of samples
in relatively little time. As an illustration, we performed 100
repetitive evaluations of the HSIC criterion for two matrices
of size 5, 000×5, 000. On a 2.7 GHz intel core i5 processor,
the average running time was 1.08s.

2.4.2. ACCELERATED REPLICATES SAMPLING

The gains achieved in Section 2.4.1 turned out to be insuffi-
cient because of the heavy computational workload involved
in replicates’ sampling. Our sampling algorithm in Slim
et al. (2019) is partly a rejection sampling algorithm. At ev-
ery iteration, we verify that the candidate replicate satisfies
the constraints Y : Y >QM,iY + bM,i ≥ 0 for i ∈ J1, iM K.
For a large iM , we observed a significant slow-down due to
the overhead between the successive evaluations of the con-
straints. A single combined evaluation would then eliminate
this overhead. We achieve this by encoding all computations
in a matrix form, as illustrated in Figure 1.

For linear algebra operations, GPUs can dramatically speed-
up computations (Krüger & Westermann, 2003). We used
them here to accelerate the multiplications detailed in Fig-
ure 1. A major drawback in hybrid CPU-GPU calculations
is the transfer time between the main memory and the GPU
memory. To alleviate this problem, we transfer the matri-
ces in QM to GPU memory once and for all before the
sampling.

3. A study of BMI and its variation in the UK
BioBank

The study of physiological phenotypes in GWAS has so far
focused on basic anthropometric measures such as height,
weight, and BMI. Their longitudinal fluctuations received
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Figure 2. Distance between the SNPs of the GWAS Catalog and
their closest neighbor among the SNPs in the clusters selected by
kernelPSI.

little attention, mainly because of the lack of such data. To
the best of our knowledge, the fluctuations of BMI have
not been the subject of any specific GWA study. In fact,
some studies (Sandholt et al., 2013) suggested that BMI
and ∆BMI might be influenced by distinct sets of SNPs.
We apply kernelPSI on the UK BioBank dataset (Bycroft
et al., 2018) to separately study BMI and variations of BMI
(∆BMI).

To facilitate interpretation, we restricted ourselves to the
genes already associated with BMI in the GWAS catalog
(MacArthur et al., 2016). The scope of the narrower study
is then gene prioritization. This is particularly interesting
given the large number of genes associated with BMI (1811
genes).

A major strength of kernelPSI is its dual SNP-gene perspec-
tive. It presents the unique benefit of jointly performing
SNP-level selection and gene-level significance testing. In
this section, we evaluate the performance of kernelPSI in
both steps.

3.1. Kernel selection

Because of the lack of a background truth for all genes,
validating the results of statistical tools in GWAS has al-
ways been difficult. For our study, the validation task is
relatively easier, though potentially biased. The genes were
retrieved on the basis of their SNP-level association to BMI
in the GWAS catalog. We can then compare the distance
between the significant SNPs in each gene to their closest
SNP neighbor in the clusters selected by kernelPSI. We pro-
vide in Figure 2 a histogram for the latter distances. The
histogram is heavily skewed toward small distances. In
other words, the GWAS catalog SNPs are often located near
SNPs selected by kernelPSI. This confirms the capacity of
kernelPSI to retrieve relevant genomic regions. Moreover,

the selected clusters also surround significant SNPs. For
BMI and ∆BMI, the selected clusters respectively included
at least one significant SNP in 62.5% and 40.6% of genes.

3.2. Hypothesis testing

For association testing, we benchmark kernelPSI against
two state-of-the-art gene-level baselines. The first one
is SKAT (Wu et al., 2011), and can described as a
non-selective variant of kernelPSI. Furthermore, it is a
quadratic kernel association score which can be incorpo-
rated into the framework of kernelPSI. The second baseline
is MAGMA (de Leeuw et al., 2015) which implements the
principal components regression gene analysis model. More
specifically, it implements an F-test in which the null hy-
pothesis corresponds to absence of effects of all genotype
PCs.
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Figure 3. A violin plot comparing the p-values of kernelPSI for
BMI and ∆BMI to two benchmarks.

To compute the empirical p-values in kernelPSI, we sampled
40, 000 replicates in addition to 10, 000 burn-in replicates.
The comparison of the distributions of the resulting p-values
to those of SKAT and MAGMA shows that kernelPSI clearly
enjoys more statistical power than the two baselines for
both phenotypes (Figure 3). The p-values were altogether
significantly lower. Thanks to the large number of replicates,
we attribute this performance, not to the lack of accuracy of
the empirical p-values, but to the discarding of non-causal
clusters in the selection stage.

4. Conclusion
Most GWAS restricted themselves to SNP-level association
testing. In the present work, we presented a tool that still
enables SNP selection, but ascends to the gene-level to per-
form association testing. The combination of the SNP and
gene levels was possible through the use of post-selection
inference which properly accounts for the SNP selection
bias to perform valid gene inference. A major novelty in
our work is the use of kernel methods which can model
nonlinear effects and interactions among SNPs. The broad
GWAS community can benefit from tools like kernelPSI
which combine statistical performance with interpretability.
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