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1. Introduction
Learning biological processes remains one of the most rel-
evant tasks in the medical domain. In many cases, deter-
mining the key factors in the development of disease has
higher priority than the diagnosis itself since it might dic-
tate or guide potential treatments and research directions.
One of the current most popular approaches to measuring
feature importance is SHAP (Lipovetsky & Conklin, 2001;
Štrumbelj & Kononenko, 2014; Lundberg & Lee, 2017),
a game-theoretic approach where the features are seen as
”players” and their marginal contributions to all possible
feature subset combinations are measured. A recent work
by Kumar et al. (Kumar et al., 2020), exposes some math-
ematical issues with SHAP and concluded that this frame-
work is ill-suited as a general solution to the problem of
quantifying feature importance. Local based methods such
as LIME (Ribeiro et al., 2016) and its variants (see e.g.
(Singh et al., 2016; Ribeiro et al., 2018.; Guidotti et al.,
2018; Pereira et al., 2019)) explain predictions on single
instances by building weak, yet explainable models on the
neighborhood of these instances. While this achieves a
higher prediction transparency for each instance, in this
work we are mainly concerned with a more holistic view
of importance, which may be more appropriate to guide
new research directions and unravel disease mechanisms.
Tree-based methods are very commonly selected for this
purpose because they compute the impurity or Gini impor-
tance (Breiman, 2001). The impurity importance is known
to be biased in favor of variables with many possible split
points, i.e. categorical variables with many categories or
continuous variables (Strobl et al., 2007). A generally ac-
cepted alternative to computing the Gini importance is that
of permutation importance (Fisher et al., 2018), where the
performance of a model is compared on the original data and
on data where each feature has been sequentially permuted.
There is however, the issue of multicollinearity. When fea-
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tures are highly correlated, then permuting one of them is
going to have little effect on the model performance since
a great deal of the information provided by this feature is
”covered” by its covariates. One option would be to com-
pute correlation between features and permute correlated
features together. However, besides the issue of having to
choose an arbitrary threshold for considering features to
be correlated enough to share their importances, it leaves
out the differentiation of their individual contributions to
the final prediction. Motivated by the idea that there is an
information overlap between different features, we take an
information theoretic approach coupled with Markov Ran-
dom Fields to disentangle the shared information between
features and scale their permutation importance accordingly,
which we call Covered Information Disentanglement (CID).
We demonstrate how CID can recover the right importance
ranking on a toy dataset, and discuss its efficacy on the Early
stage diabetes risk prediction dataset (Islam et al., 2020).

2. Methodology
2.1. Information Theory background

The entropy of r.v. Xi is defined as:

H(Xi) ≡ −
∑
xi

p(xi) log p(xi). (1)

Similarly, the joint entropy between r.v.s Xi and Xj is de-
fined as:

H(Xi, Xj) ≡ −
∑
xi

∑
xj

p(xi, xj) log p(xi, xj). (2)

The mutual information between r.v.s Xi and Xj , is the
relative entropy between the joint entropy and the product
distribution p(xi)p(xj):

I(Xi, Xj) ≡
∑
xi

∑
xj

p(xi, xj) log
p(xi, xj)

p(xi)p(xj)
. (3)

The conditional entropy of an r.v. Xi given Xj is defined
as the conditional distribution averaged over the specific
values xj that Xj can take:

H(Xi|Xj) ≡−
∑
xj

∑
xi

p(xi, xj) log p(xi|xj). (4)
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Using the definitions above, one can derive properties that
resemble those of set theory. In fact, Hu Ting (Ting, 2008)
established a formal relation between the information mea-
sures and their measure theoretic counterparts. An intuitive
representation of these relations can be seen in figure 1.

Figure 1. Venn diagram illustrating the relation between different
information measure identities.

In order to keep this intuition when generalizing for higher
dimensions, one can define the entropy of the ”union” of N
features as:

Definition 1. Multivariate Union Entropy

H
(
∪Ni=1Xi

)
≡ −

∑
xi

p(x1, ..., xN )log p(x1, ..., xN )

and using the Inclusion-Exclusion principle, we can define
the intersection as:

Definition 2. Multivariate Intersection Entropy

H
(
∩Ni=1Xi

)
≡

N∑
k=1

(−1)k−1
∑

I⊆{1, ..., N};
|I|=k

H(XI1 , ... , XIk).

2.2. Permutation Feature Importance

Permutation importance was first introduced by Breiman
(Breiman, 2001) in random forests as a way to understand
the interaction of variables that is providing the predictive
accuracy. It was later expanded by Fisher et al. (Fisher
et al., 2018) as a feature importance measure for black box
models. Suppose that for a certain feature i in the dataset
X we randomly permute the instances’ values, and denote
the resultant dataset by Xε

i . Fisher defines permutation
importance, which he refers to as model class reliance, as
either the ratio or the difference between the expected loss
of Xε

i and X:

PIi(f) := L [f (Xε
i)]− L [f (X)] (5)

2.3. Covered Information Disentanglement

When there is overlapping information between features,
measuring the performance dip when permuting one of the

correlated features corresponds to measuring the perfor-
mance dip by removing the non-mutual information between
the feature and its correlates. That is:

PIi (f) = PITi (f)− PI∪i (f) , (6)

where PITi (f) is the total importance of feature i (the quan-
tity we are interested in) and PI∪i (f) is the performance
dip covered by all other variables, which can be computed
as:

PI∪i (f) =
⋃
i/∈{I}

[
PIi (f) ∩ PI{I} (f)

]
. (7)

To compute PI∪ [f (Xε
i)] would require applying the

Inclusion-Exclusion principle and measure the performance
dip for all possible feature combinations of size 1 to the
number of features. Instead, we note that PI∪ [f (Xε

i)] intu-
itively measures the model performance dip when the model
is deprived of the information covered by the r.v.s that are
correlated with Xi. Motivated by the analogy between set-
theory and information measures, we define the fraction of
the joint information between a r.v. and the target variable
that is ”covered” by the other r.v.s as:

Definition 3. Covered information Given a r.v. Xi and a
set of distinct r.v.s {XI} , I ⊆ {1, ... N}\{i}, the Covered
information of Xi by XI w.r.t. Y is defined as:

H
C(XI)
Xi∩Y =

H (Xi ∩ Y ∩ {∪j∈IXj})
H(Xi ∩ Y )

Thus, we can use the covered information ofXi byXI , I =
{1, ..., N}\{i} w.r.t. Y and re-write equation 6 into:

PIT [f (Xε
i)] =

PI [f (Xε
i)]

1−HCXi
(XI)

. (8)

This means we can approximate the result of permuting all
possible combinations of features by computing only the
single-feature permutation loss and the covered information
of feature Xi by all the others. There is still the issue of
computing HC(XI)

Xi∩Y , since it involves computing p(X). In
order to reduce computational time, we will use Markov
Random Fields (Koller & Friedman, 2009) yielding the
main result of this paper:

Theorem 2.1. For a Markov Random Field, the covered
information of a r.v. Xi by the set of random variables
XI , I = {1, ..., N}\{i} w.r.t. Y is given by:

H
C(XI)
Xi∩Y = (9)

1 +
1

H(Xi ∩ Y )
E∼p(x∼i,∼y)

[
log

(
f

dTF e

dTFyFxie

)]
where p(x∼i,∼y) is the joint probability of r.v.s which
are neighbors to either Xi or Y , F is a matrix with the
product of joint potential values ψCF for set of cliques
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F : {Xi, Y ∈ F}; f , Fy and Fxi
are an entry, column

and row of F, respectively, while d and e are arrays with
the product of potential values ψCD , ψCE for set of cliques
D : {Xi ∈ D, Y /∈ D} and E : {Xi /∈ E, Y ∈ E} with
fixed XI .

Proof. You can check the proof in the supplementary mate-
rial.

Note how the partition function Z, which is in many cases
intractable, is absent in the expectation term. If H(Xi ∩ Y )
is computed using non-parametric methods, then comput-
ing Z is completely avoidable for the purposes of getting
the covered information. In that case, to learn the MRF
parameters one can use techniques like score-matching or
noise-contrastive estimation (Hyvärinen, 2005; Gutmann &
Hyvärinen, 2012).

2.4. Considerations and simplifications

Learning a MRF’s network structure is expensive. One
popular approach is to use GraphicalLasso which learns
the entries of a Gaussian precision matrix by minimiz-
ing: J (Λ) = −log det(Λ) + tr(SΛ) + ρ||Λ||1, where
Λ is the precision matrix, S is the empirical covari-
ance matrix and ρ acts in analogy to Lasso regulariza-
tion by penalizing a large number of non-zero precision
entries. We can model the potentials using a Gaussian
Markov Random Fields whose potentials are ψs,t(xs, xt) =
exp

[
− 1

2

(
xsΛstxt + x2sΛss + 2ηsxs

)]
, where η = Λµ (µ

is the mean vector). However, Gaussian Markov Random
fields specify a Markov Random Field over a continuous
multivariate distribution and thus the entropy must be re-
placed by differential entropy, which violates many of the
desired properties of discrete entropy. Therefore, we will
approximate a continuous distribution with a discrete one
p(xi) ≈ δp(xi), where δ is the bin size and xi is the mean
value of the bin, and then carry on with our computations as
specified in theorem 2.1. For the case where all bins have
the same size, all the δs cancel out.
If we compute the expectation of 9 as the empirical expec-
tation, then the asymptotic complexity becomes O(SB2),
where S is the number of samples taken for the empirical
expectation and B is the maximum between the number of
bins used to discretize continuous values and the maximum
number of values the discrete features take.
There is some controversy regarding the measure specified
by definition 2 as a generalization of mutual information to a
number of variables higher than two. The reason is because
it may yield negative values. To see this, consider the case
of three sets of r.v.s Xi, XI and Y and suppose there is no
correlation between Xi and XI . If we rewrite the mutual
information expression into I(Xi, Y )− I(Xi, Y |XI), then
this expression may become negative when the information

provided Xi and Y given a fixed value of XI is higher than
that of I(Xi, Y ). This can happen for instance if Xi has no
correlation withXI but knowingXI introduces a correlation
between the two (what is commonly known as ”explaining
away”). However, in this case there is no overlap between
Xi and any other variable and therefore there is no covered
information, so the covered information can be set to zero a
priori. There are other definitions of generalized mutual in-
formation that are always positive such as total correlation,
dual total correlation, redundancy-synergy index, Varadan’s
synergy or partial information decomposition (Timme et al.,
2014), but for our purposes we believe the closed-form sim-
plified expression of 2.1 compensates the potential benefit
of using these definitions instead.

3. Experimental Section
To test the CID ranking adjustment, we first tested it on a
toy dataset where the real importances are known, and then
in a real-world medical dataset. For both our tests we used
scikit-learn (Pedregosa & et al., 2011) implementation of
Extremely Randomized Trees and Graphical Lasso.

3.1. Multivariate Gaussian Test

In order to test if CID adjusts the permutation ranking into
the correct one, we took 5000 samples from a multivariate
Gaussian distribution X ∼ N (0,Σ) with 8 features, the
last being considered the output variable, and where:

Σ =

X0 X1 X2 X3 X4 X5 X6 Y



1 0.4 0.1 0.1 0.1 0 0 0.3
0.4 1 0.1 0.1 0.1 0 0 0.3
0.1 0.1 1 0.7 0.7 0 0 0.4
0.1 0.1 0.7 1 0.7 0 0 0.4
0.1 0.1 0.7 0.7 1 0 0 0.4
0 0 0 0 0 1 0.9 0
0 0 0 0 0 0.9 1 0
0.3 0.3 0.4 0.4 0.4 0 0 1

.

Thus, the feature importance is I(X2) = I(X3) =
I(X4) > I(X1) = I(X0) > I(X5) = I(X6). To test
the CID correction, we performed 20 Shuffle Splits with
Extremely Randomized Trees and computed the Gini impor-
tances for each feature, as well as the permutation feature
importance. We then adjusted the feature importances using
the CID algorithm. You can compare the rankings in fig-
ure 2 As can be seen from figure 2, the feature importance
underestimated the importance of X2, X3 and X4 because
of their high covariance as expected. The CID was able to
rectify this ranking and ranked the features in the right order.
Moreover, notice how the importance retrieved by the Gini
importance underestimated the importance of X2, presum-
ably because X3 and X4 offer nearly as good partitions as
X2 due to their similarity, but also the differences in relative
importances are very small in magnitude.
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Figure 2. Comparison of the importance ranking on the multivari-
ate gaussian dataset given by from left to right: Tree importance
(Gini importance), Permutation Importance, CID importance. The
ground truth is I(X2) = I(X3) = I(X4) > I(X1) = I(X2) >
I(X5) = I(X6).

3.2. Early stage diabetes risk prediction dataset

In order to test the efficacy of CID on a real-world dataset,
we used the Early stage diabetes risk prediction dataset (Is-
lam et al., 2020) and applied the same routine as in section
3.1.

Figure 3. Importance rankings on the Early stage diabetes risk
prediction dataset given by Tree importance (Gini importance),
Permutation Importance, CID importance and Mutual information
between the feature and the output.

We also measured the mutual information between each fea-
ture and the output to compare the importance rankings with

univariate importance measure. A feature that has a high
mutual info with the output should be ranked high in impor-
tance whereas a feature with low mutual info does not nec-
essarily mean it has low importance because it might have
useful information in the multivariate setting. The results
for the top 10 importances are depicted in figure 3. Overall,
the importances given by CID align better with the mutual
info than the ones by permutation do. In particular, permu-
tation importance seems to overvalue ’itching’, ’Alopecia’
and undervalue ’partial paresis’, ’Polyphagia’ and ’sudden
weight loss’, while CID recovered these into a ranking close
to that of the mutual info. The Expert Committee on the
Diagnosis and Classification of Diabetes Mellitus mentions
that symptoms of marked hyperglycemia include polyuria,
polydipsia, weight loss, sometimes with polyphagia, and
blurred vision (on the Diagnosis & of Diabetes Mellitus,
2003), all of which CID valued highly. CID was the only
method to attribute high importance to ’visual blurring’, a
known consequence of unstable blood glucose levels (Jacob-
sen et al., 2008; Yarbağ et al., 2015). Overall, CID ranking
seems to align more with the univariate mutual info while
still working within a multivariate setting.

4. Discussion and Conclusion
With an increasing reliance on Machine Learning methods
to conduct research in impactful domains such as Biology
and Medicine, it is more important than ever to achieve
model transparency and accurately determine feature rele-
vance. The popular feature permutation method has the ad-
vantage of being easy to understand, but its accuracy suffers
in the presence of covariates. To address this issue, we sug-
gest a method which uses Information Theory and Markov
Random Fields (MRF) to adjust the ranking given by the
permutation algorithm and we demonstrate its efficacy on a
toy dataset and a real world dataset. These improvements
can have a powerful impact in Medical and Biological re-
search since feature importance has widespread applications
in these fields for instance to pursue new research directions
or the development of drugs. However, inference of an MRF
structure is hard and thus we have only explored the case of
using Graphical Lasso in conjunction with Gaussian Markov
Random Fields. Although this particular implementation is
attractive for its scalability and intuitiveness, it might lack
sufficient expressive power to model more complex rela-
tionships between features and might not be ideally suited
for a mix of discrete and continuous data. Besides, since
CID does not depend on the partition function, it is possible
to work with unnormalized distributions whose partition
functions are intractable and estimate the parameters using
score matching or noise contrastive estimation, an approach
not explored here. A further research direction is to use
different measures of multivariate mutual information to
obtain more accurate values of covered information.
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