Supplementary Material of: Covered Information Disentanglement: Correcting Permutation Feature Importance in the Presence of Covariates

João Belo Pereira ${ }^{12}$ Diogo Bastos ${ }^{12}$ Erik Stroes ${ }^{1}$ Evgeni Levin ${ }^{12}$

We re-state theorem 0.1 here for clarity
Theorem 0.1. For a Markov Random Field, the covered information of a r.v. X_{i} by the set of random variables $X_{I}, I=$ $\{1, \ldots, N\} \backslash\{i\}$ w.r.t. Y is given by:

$$
\begin{align*}
& H_{X_{i} \cap Y}^{\mathcal{C}\left(X_{I}\right)}= \tag{1}\\
& 1+\frac{1}{H\left(X_{i} \cap Y\right)} \mathbf{E}_{\sim p\left(x_{\sim i, \sim y}\right)}\left[\log \left(f \frac{\mathbf{d}^{T} \mathbf{F} \mathbf{e}}{\mathbf{d}^{T} \mathbf{F}_{y} \mathbf{F}_{x_{i}} \mathbf{e}}\right)\right]
\end{align*}
$$

where $p\left(x_{\sim i, \sim y}\right)$ is the joint probability of r.v.s which are neighbors to either X_{i} or Y, \mathbf{F} is a matrix with the product of joint potential values $\psi_{\mathcal{C}_{F}}$ for set of cliques $F:\left\{X_{i}, Y \in F\right\} ; f, \mathbf{F}_{y}$ and $\mathbf{F}_{x_{i}}$ are an entry, column and row of \mathbf{F}, respectively, while \mathbf{d} and \mathbf{e} are arrays with the product of potential values $\psi_{\mathcal{C}_{D}}, \psi_{\mathcal{C}_{E}}$ for set of cliques $D:\left\{X_{i} \in D, Y \notin D\right\}$ and $E:\left\{X_{i} \notin E, Y \in E\right\}$ with fixed X_{I}.

Proof. Using definition 1, 2 and 3:

$$
\begin{equation*}
\frac{H\left(X_{i} \cap Y \cap\left\{\cup_{j \in I} X_{j}\right\}\right)}{H\left(X_{I} \cap Y\right)}=1+\frac{\overbrace{H\left(X_{i} \cup Y \cup X_{I}\right)}^{(1)}-\overbrace{H\left(X_{I} \cup Y\right)}^{\text {(2) }}+\overbrace{H\left(X_{I}\right)}^{\text {(3) }}-\overbrace{H\left(X_{i} \cup X_{I}\right)}^{4}}{H\left(X_{i} \cap Y\right)} \tag{2}
\end{equation*}
$$

Representing these terms with marginal distributions:
(1) $=-\sum_{x} p(x) \log p(x),(2)=-\sum_{x} p(x) \log \sum_{x_{i}} p(x)$, (3) $=-\sum_{x} p(x) \log \sum_{x_{i}} \sum_{y} p(x)$, (4) $=-\sum_{x} p(x) \log \sum_{y} p(x)$

The probability density for Markov Random fields is equal to $p(x)=\prod_{c=1}^{C} \psi_{c}\left(x_{c}\right) / \mathbf{Z}$, where \mathbf{Z} is the partition function and c are cliques in the Markov network, C being the total number of cliques. Define two sets of cliques: $A:\left\{X_{i} \in A\right\}$ and $B:\left\{X_{i} \notin A\right\}$. In that case:

$$
\begin{array}{r}
(1)=-\sum_{x} p(x) \log \left[\log \prod_{\mathcal{C}_{B}} \psi_{\mathcal{C}_{B}}\left(x_{\mathcal{C}_{B}}\right)+\log \prod_{\mathcal{C}_{A}} \psi_{\mathcal{C}_{A}}\left(x_{\mathcal{C}_{A}}\right)\right]+\log (\mathbf{Z}), \\
(2)=-\sum_{x} p(x) \log \left[\log \prod_{\mathcal{C}_{B}} \psi_{\mathcal{C}_{B}}\left(x_{\mathcal{C}_{B}}\right)+\log \sum_{x_{i}} \prod_{\mathcal{C}_{A}} \psi_{\mathcal{C}_{A}}\left(x_{\mathcal{C}_{A}}\right)\right]+\log (\mathbf{Z}) \\
(1)-(2)=-\sum_{x} p(x) \log \left(\frac{\prod_{\mathcal{C}_{A}} \psi_{\mathcal{C}_{A}}\left(x_{\mathcal{C}_{A}}\right)}{\sum_{x_{i}} \prod_{\mathcal{C}_{A}} \psi_{\mathcal{C}_{A}}\left(x_{\mathcal{C}_{A}}\right)}\right) \tag{6}
\end{array}
$$

[^0]To compute (3)- (4), define four sets of cliques: $C:\left\{X_{i} \notin C, Y \notin C\right\}, D:\left\{X_{i} \in D, Y \notin D\right\}, E:\left\{X_{i} \notin E, Y \in E\right\}$ and $F:\left\{X_{i} \in F, Y \in F\right\}$. In order to reduce the clutter, we will introduce the following functions: $d\left(x_{i}, x_{I}\right)=$ $\prod_{j \in I, j \sim i} \psi\left(x_{i}, x_{j}\right), e\left(y, x_{I}\right)=\prod_{j \in I, j \sim y} \psi\left(y, x_{j}\right), f\left(x_{i}, y\right)=\psi\left(x_{i}, y\right)$, where we will abbreviate $d\left(x_{i}, x_{I}\right)$ into $d\left(x_{i}\right)$ and $e\left(y, x_{I}\right)$ into $e(y)$ when the value for random variable X_{I} is fixed. Then:

$$
\begin{array}{r}
\text { (3) }=-\sum_{x} p(x) \log \left[\log \prod_{\mathcal{C}_{C}} \psi_{\mathcal{C}_{C}}\left(x_{\mathcal{C}_{C}}\right)+\log \sum_{x_{i}} \sum_{y} d\left(x_{i}\right) e(y) f\left(x_{i}, y\right)\right]+\log (\mathbf{Z}), \\
\text { (4) }=-\sum_{x} p(x) \log \left[\log \prod_{\mathcal{C}_{C}} \psi_{\mathcal{C}_{C}}\left(x_{\mathcal{C}_{C}}\right)+\log \sum_{y} d\left(x_{i}\right) e(y) f\left(x_{i}, y\right)\right]+\log (\mathbf{Z}) \\
\text { (3) }- \text { (4) }=-\sum_{x} p(x) \log \left(\frac{\sum_{x_{i}} \sum_{y} d\left(x_{i}\right) e(y) f\left(x_{i}, y\right)}{\sum_{y} d\left(x_{i}\right) e(y) f\left(x_{i}=X_{i}, y\right)}\right) \tag{9}
\end{array}
$$

where $f\left(x_{i}=X_{i}, y\right)$ is the function f for a fixed value of the r.v. X_{i}. Since the set of cliques $A=\{D \cup F\}$, and denoting by $d\left(x_{i}=X_{i}\right), f\left(x_{i}=X_{i}, Y=y\right)$ the functions d and f for fixed values of X_{i} and Y, then:

$$
\begin{array}{r}
(1)-(2)+(3)-(4))=-\sum_{x} p(x) \log \left(\frac{\sum_{x_{i}} \sum_{y} d\left(x_{i}=X_{I}\right) f\left(x_{i}=X_{i}, Y=y\right) e(y) f\left(x_{i}, y\right)}{\sum_{x_{i}} \sum_{y} d\left(x_{i}=X_{I}\right) d\left(x_{i}\right) f\left(x_{i}, Y=y\right) e(y) f\left(X_{i}, y\right)}\right)= \tag{10}\\
-\mathbf{E}_{\sim p\left(x_{\sim i, \sim y}\right)}\left[\log f\left(x_{i}=X_{i}, Y=y\right)+\log \left(\frac{\mathbf{d}^{T} \mathbf{F} \mathbf{e}}{\mathbf{d}^{T} \mathbf{F}_{y} \mathbf{F}_{x_{i}} \mathbf{e}}\right)\right]
\end{array}
$$

where $x_{\sim i, \sim y}$ is an instance of the set of r.v.s that are neighbors to X_{i} or Y, \mathbf{d} and \mathbf{e} are column arrays with the different values of $d\left(x_{i}\right)$ and $e(y)$ for fixed X_{I}, \mathbf{F} is a matrix with all the values $f\left(x_{i}, y\right)$ with varying values of X_{i} in the rows and Y in the columns, while \mathbf{F}_{y} and $\mathbf{F}_{x_{i}}$ are row and column vectors of \mathbf{F} corresponding to fixed Y and fixed X_{i}, respectively. This yields the result of the theorem.

[^0]: ${ }^{1}$ Amsterdam University Medical Center, Meibergdreef 91105 AZ, Amsterdam, The Netherlands ${ }^{2}$ Horaizon, Marshallaan 22625 GZ, Delft, The Netherlands. Correspondence to: João Pereira j.p.belopereira@amsterdaumc.nl, Evgeni Levin e.levin@amsterdaumc.nl.

