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We re-state theorem 0.1 here for clarity

Theorem 0.1. For a Markov Random Field, the covered information of a r.v. Xi by the set of random variables XI , I =
{1, ..., N}\{i} w.r.t. Y is given by:
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where p(x∼i,∼y) is the joint probability of r.v.s which are neighbors to either Xi or Y , F is a matrix with the product of joint
potential values ψCF for set of cliques F : {Xi, Y ∈ F}; f , Fy and Fxi are an entry, column and row of F, respectively,
while d and e are arrays with the product of potential values ψCD , ψCE for set of cliques D : {Xi ∈ D, Y /∈ D} and
E : {Xi /∈ E, Y ∈ E} with fixed XI .

Proof. Using definition 1, 2 and 3:
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Representing these terms with marginal distributions:
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The probability density for Markov Random fields is equal to p(x) =
∏C

c=1 ψc(xc)/Z, where Z is the partition function
and c are cliques in the Markov network, C being the total number of cliques. Define two sets of cliques: A : {Xi ∈ A} and
B : {Xi /∈ A}. In that case:
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To compute 3 − 4 , define four sets of cliques: C : {Xi /∈ C, Y /∈ C}, D : {Xi ∈ D, Y /∈ D}, E : {Xi /∈ E, Y ∈ E}
and F : {Xi ∈ F, Y ∈ F}. In order to reduce the clutter, we will introduce the following functions: d(xi, xI) =∏

j∈I,j∼i ψ(xi, xj), e(y, xI) =
∏

j∈I,j∼y ψ(y, xj), f(xi, y) = ψ(xi, y), where we will abbreviate d(xi, xI) into d(xi)
and e(y, xI) into e(y) when the value for random variable XI is fixed. Then:
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where f(xi = Xi, y) is the function f for a fixed value of the r.v. Xi. Since the set of cliques A = {D ∪ F}, and denoting
by d(xi = Xi), f(xi = Xi, Y = y) the functions d and f for fixed values of Xi and Y , then:
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where x∼i,∼y is an instance of the set of r.v.s that are neighbors to Xi or Y , d and e are column arrays with the different
values of d(xi) and e(y) for fixed XI , F is a matrix with all the values f(xi, y) with varying values of Xi in the rows and Y
in the columns, while Fy and Fxi are row and column vectors of F corresponding to fixed Y and fixed Xi, respectively.
This yields the result of the theorem.


