
Novel Insights into RNA Splicing from Interpretable
Machine Learning

Mukund Sudarshan* Susan E. Liao*

*Courant Institute of Mathematical Sciences
New York University

Oded Regev*

1 Introduction

The advent of high-throughput next-generation nucleic acid sequencing revolutionized biomedical research
by enabling the acquisition of large DNA and RNA datasets. Intense efforts have been directed towards
developing experimental and computational techniques to use next-generation sequencing to gain insights into
nucleic acid processes.
However, despite the high quality of sequencing data, the use of modern machine learning techniques such as
deep learning has been limited due to their lack of interpretability. Accurate predictions alone are insufficient
for advancing our understanding of the underlying nucleic acid processes. In order to drive biological discovery,
models must be designed with interpretability in mind [12].

RNA splicing: Messenger RNA undergoes extensive nuclear processing. One of the most important of these
processes is RNA splicing [7]. During this process, introns are removed from the transcript, and the remaining
exons are joined. The “splicing code” encompasses the RNA sequences that inform splicing decisions on
where cleavage and ligation takes place [5]. While the core splicing signals (5’ and 3’ splice sites and branch
point sequences) are relatively well understood [15], exons and introns contain splicing motifs (also known as
splicing regulatory elements), which are short sequence patterns (or motifs) that play a key role in splicing
decisions, and are not as well understood. These splicing motifs exert their effect by serving as binding sites
for splicing factor proteins.

Contribution: We show how convolutional networks can be used to extract a succinct and biologically
informative set of rules for splicing. Using a published dataset from a splicing reporter assay [10], our method
is able to produce a short list of only 6 splicing motifs extracted from the filters of these networks that together
enable highly accurate predictions of splicing outcomes (Fig. 1). Remarkably, even though the list is produced
automatically from sequencing data alone without any prior knowledge about biology, the discovered motifs
all closely match motifs of known splicing factors that were previously implicated in splicing. Interestingly,
one of the strongest motifs, corresponding to the SRSF3 splicing factor, was missed in a previous analysis of
this dataset [10], demonstrating the advantages of our method.
In addition, we use our motif identification method to understand how the various motifs combine to form
splicing decisions. In particular, we can quantify the strengths of the various splicing motifs (Fig. 1D). One
novel observation is the identification of SRSF3 as a particularly strong splicing enhancer, more than twice as
strong as SRSF1.
As further evidence that the discovered motifs correspond to a biological ground truth, we apply our method
to four independent biological experiments. Notably, our method discovers the same motifs in all four
experiments (Fig. 2).
Together, these results demonstrate how interpretable models can be used to derive biological insights from
high throughput sequencing data. Our method can also be applied to other recent high throughput assays,
including those focusing on alternative polyadenylation [1], 5’UTR regulation [11], mRNA degradation [8],
and more.

Technical contribution: A major obstacle to deriving biologically meaningful motifs is that motifs extracted
from convolutional networks are generally not reproducible. Due to the non-identifiable nature of neural

Preprint. Under review.



A DB

C

E

Figure 1: The 6 representative motifs found in our dataset are sufficient to achieve high performance in predicting
splicing. (A) Scatter plot of the observed SD2% versus predicted SD2% generated using the median q̂conv model across
bootstraps in terms of held-out KL. This neural network has 24 filters with no prior on the weights. This network achieves
a KL of 0.0606 and an RMSE of 0.1272 on the test set. The red line shows how perfect predictions would appear on the
graph. (B) Correlation plot between the embeddings of all filters collected across 30 bootstraps after a screening step
to remove noisy filters. The filters were clustered into six clusters, F1, . . . , F6 and shown in this order. (C) Number of
times a filter from each cluster is learned by a bootstrapped model. Filters that are strongly predictive of splicing can be
learned multiple times in a single bootstrapped model, while filters that have less of an effect may be missed in several
bootstraps. (D) The logo sequence for the representative filter in each cluster found by our method, ranked by splicing
decision score (shown in the sliders). For example, the presence of the motif in F6 will increase the probability of splicing
at SD2, while the presence of the motif in F5 will have the opposite effect. We also show the best matched splicing factor
for each filter [2, 4, 9]. (E) Scatter plot of observed SD2% versus the predicted SD2%. The network used to generate
this plot was trained using only the 6 filters identified by our method (shown in (D)). Only the linear layer weights were
re-trained. This network achieves a KL of 0.0651 and an RMSE of 0.1370 on the test set. The red line shows how perfect
predictions would appear on the graph.

network parameters, each time we train the network (with a different random seed or bootstrap) we get different
motifs. These irreproducible motifs are unlikely to be biologically meaningful.
Our main technical contribution is a method to extract a small list of motifs from splicing prediction models
in a reproducible way. The method involves grouping convolutional filters learned during multiple training
runs on bootstraps of the training data, and then extracting a representative motif from each group of filters.
We then show how this small list of filters can be used in downstream analyses to understand how motifs
combine to form a splicing decision. We observe that a model that uses only the discovered motifs incurs very
little loss in accuracy, despite a significant reduction in the number of filters (from 24 to 6 in our case). More
importantly, we observe that the resulting motifs all seem biologically informative, as they agree with previous
biochemical data.

Comparison to previous work: A prior analysis of the same splicing dataset was based on a direct k-mer
enrichment analysis [10]. This analysis outputs a list of scores for all 4096 possible 6-mers, and as such is
difficult to interpret. For instance, while some splicing motifs were manually identified among the top scoring
6-mers (such as those corresponding to hnRNPF/H or hnRNPA/B splicing factors), other important motifs
were missed (such as those corresponding to SRSF3 or hnRNPC splicing factors). Our method replaces such
an opaque list of k-mer scores with an interpretable shortlist of motifs.

2 Interpreting RNA splicing with models

Dataset: We use a previously published splicing dataset [10], which we filtered to remove experimental
artifacts (see appendix). It consists of RNA sequences si ∈ {A,C,G,U}d of length d = 83. Each si is
associated with a response yi ∈ [0, 1] representing the observed probability of splicing in one of two competing
splice sites.

2



Model design: It was previously observed that splicing choices are based on the additive contribution of
short sequence motifs [10]. That is, it is possible to assign a score to each of the 4k possible k-mers (typically
k = 6), such that the output yi agrees with a sigmoid-like function of the sum of the scores of the d− k + 1
k-mers in the sequence si.1 The scores appeared to correlate with the presence of short motifs; for instance,
6-mers containing GGG as a subsequence all have low scores. This agrees with the biological fact that this
motif serves as a binding site for the hnRNP F/H splicing factors [3].
Based on these observations, and in order to ensure interpretability of the trained network, we decided to use
a simple 2-layer network. Briefly, the first layer is a 1-dimensional convolutional layer applied to a one-hot
encoding of the input sequence si. The second and final layer is a linear layer with sigmoid activation. The
model is fit using KL minimization between y and its predictions.

Accuracy: We split the dataset into a training set of size 29,118 and a test set of size 12,480. Despite its
simplicity, this model performs remarkably well in terms of accuracy as shown in Fig. 1A. Specifically, a
single model fit to the training set achieves a held-out KL divergence of only 0.0602± 0.0011 (corresponding
to 0.1271± 0.0018 RMSE). Such good agreement with the biological data suggests that interpretations of the
model would yield accurate understanding of the underlying splicing code.

Interpretability: The network’s simple design facilitates interpretability. Specifically, the filters in the
convolutional layer provide potential splicing motifs. Moreover, the weights in the linear layer provide a
“strength” to each such motif, as well as a “direction” (increasing splice site usage if positive, and decreasing it
if negative).
Unfortunately, we observed that the motifs discovered in this way are not reproducible. While some of them
showed up consistently across runs and agreed with the biological literature (e.g., the triple-G motif), most
seemed like artifacts. This led us to develop a method to robustly identify motifs, as described next.

2.1 Method for identifying reproducible filters

The premise behind our method is that each filter is drawn from a neighborhood of filters in a latent embedding
space. In each neighborhood of this space, there may be many possible filters that all correspond to a single
motif. The goal of our method therefore, is to model this embedding space of convolutional filters across
multiple runs and identify groups of filters. We then identify the motif that each group corresponds to.
More specifically, our method involves several stages. We first fit several models to bootstraps of the data. For
each filter in each model, we generate an embedding vector. We then cluster all filters across all bootstraps
using their embedding vectors. Finally, each cluster is assigned a representative motif.

Bootstrapping models: We first bootstrap the training data {xi}Ni=1 B times. Each bootstrapped dataset
consists of N samples that are drawn uniformly at random from the training set with replacement. To
each bootstrapped dataset, we fit a two-layer convolutional network q̂conv(y | x) to get the set of models
{q̂(b)conv(y | x)}Bb=1. The first layer is a one-dimensional convolutional layer with J filters {fj}Jj=1 of width
W applied to xi, the one-hot encoding of an RNA sequence, followed by the second and final linear layer,
whose output predicts yi. Since q̂conv is able to model the data so well, it makes an excellent candidate for
interpreting splicing patterns.

Generating embeddings: For each model q̂(b)conv, for each filter f
(b)
j , we compute an embedding vector

z
(b)
j ∈ RN as follows:

z
(b)
j = [〈θ(b)j , σ(Convolution(f (b)j ,x1))〉, . . . , 〈θ(b)j , σ(Convolution(f (b)j ,xN ))〉]

where θ(b)j is a vector of the linear layer parameters for the bth neural network that corresponds to the jth
filter and σ(a) = (1 + exp(−a))−1 is the sigmoid activation function. Note that the ith coordinate of the
embedding vector z(b)j is simply the contribution of filter f (b)j to the output of the bth bootstrap model on input
xi (before the final sigmoid activation).

Clustering embeddings: We now cluster the filters using the embeddings of all J · B filters. We first
compute the pairwise correlations between all J ·B filters. We then remove any filter that does not correlate
highly with any other filter, as such filters likely represent artifacts. The remaining filters are clustered using
the Voorhees algorithm [14], which groups filters by their minimum similarity (a user-defined hyperparameter)
with other filters. As a similarity metric for this algorithm, we use the Pearson distance (one minus the
correlation between two embeddings).

1This is actually a weighted sum with weights depending on the position along the sequence.

3



Representative motifs: Finally, we generate a representative motif for each cluster of filters. For each filter
f
(b)
j in cluster ck ∈ {c1, . . . , cK}, we compute a vector of synthetic activations

g
(b)
j := [σ(Convolution(f (b)j ,m1)), . . . , σ(Convolution(f (b)j ,m4W ))]

where {mi}4
W

i=1 is the set of all possible k-mers (consecutive subsequences) of length W . Then, for each
cluster ck, a representative filter fk is chosen by selecting the one whose corresponding g

(b)
j has the highest

mean correlation with the other filters in ck.

3 Experiments

To evaluate our method, we use the dataset from [6, 10]. Each sequence si in the dataset consists of 83
nucleotides. For our experiments, we consider two competing splice sites: SD1 and SD2. The corresponding
labels yi represent pSD2/(pSD1 + pSD2), where pSD1 and pSD2 are the observed probabilities of a splicing event
at SD1 or SD2. We split the dataset into a training set of size 29,118, and a test set of size 12,480. We now
apply the steps outlined in the previous section.

Bootstrapping models: To extract motifs that correspond to splicing, the training set is first bootstrapped 30
times to fit the models {q̂(b)conv(y | x)}30b=1. Each q̂(b)conv consists of 24 convolutional filters followed by a linear
layer with sigmoid activation. We performed a basic grid search over the number of filters and found the
performance of the networks to saturate after 24 filters. These models perform very well in terms of accuracy.
The mean held-out KL the bootstrapped models achieve is 0.0602, with a standard deviation of 0.0011 (RMSE
of 0.1271 ± 0.0018), indicating that the performance is very consistent across bootstraps (Fig. 1A). This
supports our initial hypothesis that these neural networks are ideal candidates for interpreting the splicing
code, despite their simple architecture.

Generating and clustering embeddings: We generate embeddings for each filter, then screen noisy filters
by dropping the ones whose embeddings have correlation less than 0.35 with all other filter embeddings.
This weak filtering step highlights the fact that many filters show up only once across many bootstraps. The
remaining filters each have strong correlations with several other filters, as we will discuss shortly. We visualize
the correlation matrix of the embeddings of each of the remaining filters in Fig. 1B.
Next, using the Voorhees algorithm with a minimum similarity threshold of 0.9, we cluster the filters using
their embeddings. This means that filters whose embedding vectors have a correlation of 0.9 or greater will be
in the same cluster. This process yields 6 clusters, shown as boxes on Fig. 1B.
Using these clusters, we also visualize the frequency of observing a filter from each cluster across bootstraps
(Fig. 1C). Note that even strong motifs like UAG (F5) do not show up in many of the bootstrapped runs,
highlighting the importance of running the bootstraps.

Representative motifs: We compute the representative filter for each cluster. The motif discovered by each
of these filters is visualized in Fig. 1D (using [13]), along with its best matched splicing factor.

Assigning reproducible scores to the robust motifs: Having demonstrated a method to reproducibly
identify motifs in the splicing dataset, we now seek to explain how they combine to form a splicing decision.
We therefore fit a new q̂conv model whose convolutional layer is fixed to be only the six representative filters.
Remarkably, this network is able to achieve performance on par with much larger networks as shown in
Fig. 1E, further demonstrating the utility of the discovered motifs. Since the resulting optimization problem
(over the linear layer only) is convex, the learned weights in the linear layer are reproducible, and as such are
directly interpretable. To visualize these weights, we average them across positions in the input and arrive at
one numerical splicing decision score for each motif, showing the contribution of each motif towards splicing
in SD2 (sliders in Fig. 1D).

Consistency across biological experiments: We next demonstrate that the interpretation given by our
method is reproducible not just across bootstraps but also across independent biological experiments. For
that, we apply our method to three additional additional biological experiments. We observe that the resulting
motifs and their scores are highly consistent across all four experiments (Fig. 2 and Fig. 1D).
To summarize, our method is able to reproducibly identify motifs and assign to them scores that together
provide a comprehensive picture of splicing decisions.

4



References
[1] Nicholas Bogard, Johannes Linder, Alexander B. Rosenberg, and Georg Seelig. “A Deep Neural

Network for Predicting and Engineering Alternative Polyadenylation”. In: Cell 178.1 (2019), 91–
106.e23.

[2] Y Cavaloc, C F Bourgeois, L Kister, and J Stévenin. “The splicing factors 9G8 and SRp20 transactivate
splicing through different and specific enhancers.” In: RNA 5.3 (1999), pp. 468–483.

[3] Cyril Dominguez, Jean-Francois Fisette, Benoit Chabot, and Frederic H.-T. Allain. “Structural basis
of G-tract recognition and encaging by hnRNP F quasi-RRMs”. In: Nature Structural & Molecular
Biology 17.7 (2010), pp. 853–861.

[4] Daniel Dominguez et al. “Sequence, Structure, and Context Preferences of Human RNA Binding
Proteins”. In: Molecular Cell 70.5 (2018), 854–867.e9.

[5] Klemens J. Hertel. “Combinatorial control of exon recognition”. In: The Journal of Biological Chemistry
283.3 (2008), pp. 1211–1215.

[6] Johannes Linder, Nicholas Bogard, Alexander B. Rosenberg, and Georg Seelig. “A Generative Neural
Network for Maximizing Fitness and Diversity of Synthetic DNA and Protein Sequences”. In: Cell
Systems (2020).

[7] R. A. Padgett, P. J. Grabowski, M. M. Konarska, S. Seiler, and P. A. Sharp. “Splicing of messenger
RNA precursors”. In: Annual Review of Biochemistry 55 (1986), pp. 1119–1150.

[8] Michal Rabani, Lindsey Pieper, Guo-Liang Chew, and Alexander F. Schier. “A Massively Parallel
Reporter Assay of 3’ UTR Sequences Identifies InVivo Rules for mRNA Degradation”. In: Molecular
Cell 68.6 (2017), 1083–1094.e5.

[9] Debashish Ray et al. “A compendium of RNA-binding motifs for decoding gene regulation”. In: Nature
499.7457 (2013), pp. 172–177.

[10] Alexander B. Rosenberg, Rupali P. Patwardhan, Jay Shendure, and Georg Seelig. “Learning the
Sequence Determinants of Alternative Splicing from Millions of Random Sequences”. In: Cell 163.3
(2015), pp. 698–711.

[11] Paul J. Sample et al. “Human 5’ UTR design and variant effect prediction from a massively parallel
translation assay”. In: Nature Biotechnology 37.7 (2019), pp. 803–809.

[12] Ammar Tareen and Justin B. Kinney. “Biophysical models of cis-regulation as interpretable neural
networks”. In: bioRxiv (2020), p. 835942.

[13] Ammar Tareen and Justin B. Kinney. “Logomaker: beautiful sequence logos in Python”. In: Bioinfor-
matics (Oxford, England) 36.7 (2020), pp. 2272–2274.

[14] Ellen M Voorhees. “The cluster hypothesis revisited”. In: Proceedings of the 8th annual international
ACM SIGIR conference on Research and development in information retrieval. 1985, pp. 188–196.

[15] Zefeng Wang and Christopher B. Burge. “Splicing regulation: From a parts list of regulatory elements
to an integrated splicing code”. In: RNA 14.5 (2008), pp. 802–813.

5



A Consistent motifs across independent experiments

A B C

Figure 2: Our method identifies highly consistent motifs across additional independent experiments. The filters for
each cell line are clustered separately in three additional biological experiments performed in three different cell lines: (A)
MCF7, (B) HEK, and (C) HeLa.

B Data and preprocessing

Dataset: We used the results of a previously published assay [6, 10] which includes splicing outcomes
for over 3 · 105 random test constructs. The test constructs all have two competing splice sites, called SD1
and SD2 (see Fig. 3). In between the splice sites is a randomized region of 25 nucleotides. An additional
randomized region of 25 nucleotides is positioned downstream of SD2.
For each test construct, the dataset stores the random sequence contained in it, as well as the splicing
measurement outcomes, namely, the number of RNA reads with splicing in SD1 and the number with splicing
in SD2. Occasionally, splicing would occur in other positions along the sequence (cryptic splice sites), and
these reads are recorded too.

Figure 3: Splice site assay design from [10]

Artifact removal: We noticed that a significant fraction of the sequences in the dataset are mislabeled. That
is, the splicing measurement results do not correspond to the provided sequence. We traced this artifact to badly
coupled barcodes in the DNA library preparation. To remove these artifacts, we obtained the raw Illumina
FASTA files from the NIH SRA database, and applied a stringent quality filter. Specifically, we filtered out
all sequences with only one DNA read supporting the coupling between the barcode and the randomized
sequence. We also filtered out sequences whose RNA sequencing suggested bad coupling (such as reads with
SD2 splicing but with a different sequence in the first randomized region). This step reduced the size of the
dataset by over 50% to 145,431 constructs. Despite that decrease in size, we noticed a significant improvement
in prediction accuracy, as expected from a cleaner dataset.

6



Filtering: After artifact removal, we further filtered the dataset. First, we only kept sequences for which
there were at least 20 reads. This is to ensure a sufficiently accurate estimate of the splice site usage probability.
Moreover, we removed all constructs for which more than 10% of the reads came from splicing products
outside SD1 and SD2. These constructs often correspond to cryptic splice sites occurring inside the randomized
sequence, which we chose to ignore for the present analysis. The final filtered dataset had 41,598 constructs.

7


	Introduction
	Interpreting RNA splicing with models
	Method for identifying reproducible filters

	Experiments
	Consistent motifs across independent experiments
	Data and preprocessing

