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Introduction: 

Mapping the relationship between genomic content of an organism and its phenotype is essential to 

precision medicine. In humans, mutations at specific sites of the genome have been proven to affect several 

clinical phenotypes. Similarly in prokaryotes, the recent expansion of genomic data repositories have paved 

the way for identifying the genomic elements underlying various clinically, environmentally and 

industrially important bacterial phenotypes [1–4]. Such discoveries has improved our knowledge of the 

molecular mechanisms underlying important microbial phenotypes such as antibiotic resistance and 

virulence; and thus has the potential to contributing to the development of novel drugs, vaccines and 

antibiotics. 

Genome-Wide Association Studies (GWAS) have thus far been the most common type of analysis for 

genotype-phenotype mapping in bacteria which can be used to dissect the genetic components of any 

measurable and heritable phenotype in an unbiased hypothesis-free manner [5]. Traditional single-locus 

GWAS approach is defined as models testing the statistical significance of association between a phenotype 

and a single variant at a time, repeated for all variants across the genome while explicitly adjusting for 

population stratification and/or multiple-hypothesis testing. As an alternative approach, artificial 

intelligence (AI) in form of machine learning (ML) and deep learning have been used to build models to 

correlate genomic variations with phenotypes [6]. However, similar to polygenic risk score analysis [7], the 

main focus of AI methods is the accurate prediction of the microbial phenotype based on occurrence of 

genomic variation rather than thoroughly understanding the molecular mechanisms underlying it.  

Nevertheless, the accurate prediction of phenotype by a specific model in a defined dataset do not guarantee 

the replicability of results in different dataset when the model is unable to identify true underlying genomic 

elements. This issue is particularly acute in bacterial genotype-phenotype mapping due to the unique 

characteristics of bacterial populations such as strong population stratification and bacterial genomes, and 

in particular, genome-wide linkage disequilibrium (LD) [5]. Models naïve to these confounding elements 

may achieve high prediction accuracies in the dataset used for model building; however, the achieved 

precision may not be generalizable to different dataset, an issue termed as ‘overfitting’ in AI context. An 

interpretable AI model capable of identifying the true causal markers not only guarantees higher 

generalizability of the model but also provides a means for experimental validation of the observed 

prediction accuracies and sheds light on the molecular mechanisms underlying the phenotype.  

In this study, we evaluated the performance of various regression-based and decision tree-based ML 

approaches commonly used in bacterial genotype-phenotype mapping for their precision and accuracy in 

identifying true causal markers underlying simulated bacterial phenotypes. To evaluate the relative 

performance of AI and traditional genotype-phenotype mapping approaches, performance of interpretable 

ML models were compared with the linear mixed model-based GWAS approach implemented in GEMMA. 

GEMMA was selected because we previously found it to be the best performing non-ML method for 

bacterial GWAS [5]. Performances of all the models were benchmarked against bacterial genotype-



phenotype simulations generated by BacGWASim [5]. We focused mainly on the effects of sample size, 

causal variant effect size and LD (recombination rates) as they are the most important variables determining 

the performance of GWAS tools [5, 8] while the other evolutionary parameters were kept constant.  

With the rapid expansion of the application of AI in bacterial genotype-phenotype mapping, it is essential 

to evaluate the efficiency of these models in adjusting for confounding elements unique to bacteria. By 

systematic comparison of the performance of AI models with traditional bacterial GWAS tools across a 

range of realistic effect sizes, recombination rates and sample sizes, our study provides a basis for correct 

choice of genotype-phenotype mapping model across different evolutionary scenarios. Our work also 

inspects the heterogeneity of different ML models, in their power to identify true set of causal markers in 

high-dimensional bacterial genomic data.   

Materials and methods: 

Benchmark datasets 

Total bacterial genomes including protein coding genes and noncoding regulatory elements were simulated 

using BacGWASim. Noncoding regulatory elements were included in the simulations as they have been 

suggested to play important roles in evolution of species [9, 10]. Eighteen causal markers with ORs (effect 

sizes) of 2, 3, 4, 7, 10, 11, 15 and 20 (natural logarithm in the range of 1 to 3) with minor allele frequency 

>0.1 were randomly chosen for phenotype simulation. The LD values between the selected markers were 

measured using bcftools [11] and markers with high correlation (r2 >0.6) were discarded. This filtering step 

to remove strongly linked causal markers was included to ensure that these markers (including those of 

different effect sizes) were identifiable in the simulated datasets. We note that causal markers could still be 

linked to non-causal alleles, posing a challenge for ML methods to correctly identify the causal variant. 

Ten sets of simulations were generated, each containing 100,000 markers with minor allele frequency >0.01 

and for each simulation, a binary matrix with sample names as rows and marker ids as columns was 

produced. 

Genotype-phenotype mapping tools 

We trained the six interpretable ML models including l2-regularized logistic regression, l2-regularized 

support vector machine (SVM) [12], random forest [13], extreme gradient boosting (XGB) [14], light 

gradient boosting model (LGBM) [15] and kover [16] on the ten sets of simulations and calculated their 

mean power in correctly ranking the features based on the assigned effect sizes. Additionally, GEMMA 

v.98 [17] that is a linear mixed model-based GWAS tool was tested with pairwise variant-based genetic 

distances to correct for population stratification. 

Results: 

LightGBM ML model outperforms traditional GWAS in identification of causal markers 

All the models were evaluated based on three performance metrics including 1) the power to identify causal 

variants in the top 50 ranked features, 2) the fraction of cumulative feature importance captured and 3) area 

under the curve (AUC) of precision-recall plot. Across the range of low (odds ratio ~ 1) to moderate (odds 

ratio ~ 2) and high odds ratio (~ 3), LGB model achieved the highest performance in identifying causal 

markers within the top 50 ranked features, respectively with the mean sensitivity of 0.57 , 0.82  and 0.87, 

followed by logistic regression and linear SVM. Using the same performance metrics, GEMMA 

respectively achieved the mean sensitivity of 0.17, 0.45 and 0.75 (Figure 1). 



 

 

 

 

 

 

 

 

 

 

 

Next, we checked whether the relative power of ML models depends on the number of top features 

considered in the analysis. To this end, the precision-recall scores for identifying causal markers with a 

mixture of effect sizes were calculated by including the range of 16 to 500 top ranked features and the 

corresponding AUC values were estimated. Consistently, the LGB model outperformed other models by 

AUC of 0.40 (standard deviation (SD) = 0.12), while GEMMA achieved average AUC of 0.17 (SD =0.08) 

(Figure 2).  

Finally, models were evaluated for their efficiency to capture the quantitative importance of causal variants. 

After normalizing the estimated feature importance to sum to one, the fraction of cumulative feature 

importance captured by each model were estimated across categories of causal markers with different effect 

sizes. Our analysis showed that LGB model possessed the best performance by respectively capturing 0.36, 

0.34 and 0.37 of cumulative initial feature importance assigned to causal markers across categories of effect 

sizes (Figure 3). Logistic regression and linear SVM models along with GEMMA all achieved poorer 

performances based on this metric.    

In summary, our results indicates that in genotype-phenotype mapping of bacterial species with frequent 

genomic recombination such as Streptococcus pneumonia with moderate sample size ( <500) and with 

causal markers distributed within a range of effect sizes ( 1<ln(odds ratio)<=3), ML can outperform 

traditional GWAS in adjusting for confounding elements and hence, identifying causal variants. 

 

Figure 1 Power of genotype-phenotype mapping tools to identify causal variants. Sensitivity of ML 
models in comparison with GEMMA implementing a linear mixed model-based GWAS were compared 
across different categories of effect sizes. Mean values are shown by triangles. 



Discussion: 
Accurate microbial genotype-phenotype prediction is 

a problem of high significance in precision medicine, 

but which poses great challenges for learning 

algorithms. Difficulties arise not only because of the 

unique characteristics of bacterial populations such as 

population stratification but also due to the relatively 

small size of available samples compared with the 

size of the genomic data available for each sample. 

Furthermore, interpretability of the prediction model 

is essential to fill the gap in our understanding on the 

molecular mechanisms underlying microbial 

phenotypes which is not possible with most of state-

of-the-art deep learning-based AI models [16]. 

In this study we show that LGBM is the best 

performing ML model to adjust for confounding 

factors in bacterial genotype-phenotype mapping 

and achieves the best performance in identification 

of true causal markers (Figures 1-2). LGBM also 

captures the highest fraction of cumulative feature 

importance relative to other evaluated ML models 

(Figure 3). Notably, LGBM outperforms linear mixed 

model-approach implement in GEMMA which is the 

best performing traditional GWAS method based on 

all three evaluated metrics indicating that this model 

could potentially replace traditional GWAS tools for 

the purpose of accurate identification of genomic 

elements underlying bacterial phenotypes.  

 

This work is still in progress, and the findings need to 

be replicated under different realistic evolutionary 

scenarios such as different recombination rates and 

sample sizes.  
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