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Abstract

We present a feature attribution method based on generative modeling for interpret-
ing biological sequence predictive neural networks – Scrambler Neural Networks
– which learns the smallest set of features to either preserve or perturb such that
downstream model predictions are maximally reconstructed or distorted.

1 Introduction

Neural networks are increasingly used for biological sequence prediction problems (Alipanahi et al.,
2015; Avsec et al., 2019; Movva et al., 2019; Bogard et al., 2019; Sample et al., 2019; Eraslan et
al., 2019; Jaganathan et al., 2019; Senior et al., 2020, Yang et al., 2020), and developing accurate
interpretation methods for these models is critical. In particular, the task of attributing a given
prediction to a set of input features can guide scientific discovery. For example, researchers have
uncovered rules for DNA and RNA biology (Bogard et al., 2019; Kelley et al., 2019; Zeng et al.,
2020), chromatin regulation (Zhou et al., 2015; Kelley et al., 2016; Zeng et al., 2018; Singh et al.,
2019), and complex structural features in protein folding (Norn et al., 2020) by interrogating neural
networks. Many current neural network attribution methods rely on local approximation to estimate
individual input feature contribution (Simonyan et al., 2013; Zeiler et al., 2014; Springenberg et
al., 2014; Sundararajan et al., 2017; Shrikumar et al., 2017; Lundberg et al., 2017). However, this
approach has two main shortcomings: first, it assumes independence of input features, which is often
incorrect. Second, it struggles with saturated activations within the network.

Here we take an attribution method from computer vision which naturally overcomes issues with
saturation and feature dependence and adapt it to the biological sequence domain: We train a deep
generative network to either preserve or perturb a small set of features to preserve or distort a
downstream prediction. Our version of this approach, which we call Scrambler Neural Networks, is
tailored for categorical input patterns such as sequences. Previous methods from computer vision
(Fong et al., 2017; Dabkowski et al., 2017) perturb the input by fading or blurring, which is ill-suited
for one-hot encoded patterns. Similarly, related feature selection methods for discrete input variables
(Chen et al., 2018, L2X; Yoon et al. 2018, INVASE) learn to select a small set of dimensions using
a 0/1 mask, but zeroing out entire ‘one-hot’ positions can push sequence-predictive models out of
distribution. Instead, Scramblers rely on a categorical feature sampling distribution at each sequence
position which smoothly interpolates between the current input and a background distribution based on
the generated importance scores. This perturbation operator ensures that Gumbel-sampled sequences
stay in distribution. In this paper, we show that Scramblers learn meaningful feature attributions and
outperform other methods on several biological sequence-predictive tasks.

2 Scrambling Neural Networks

The Scrambler architecture is illustrated in Figure 1A. We let an auto-encoding network S, called
the Scrambler, reconstruct the input pattern x̂S = S(x) subject to a conservation penalty CCons

(
x̂S

)
which enforces high entropy. In practice, S does not directly reconstruct x̂S , but rather predicts
a pattern of real-valued importance scores that are used for reconstruction (see below). Samples{
x̂
(k)
S

}K

k=1
drawn from this scrambled input distribution x̂S are passed to the predictor P . By

comparing the perturbed predictions P(x̂(k)
S ) of the scrambled input samples to the original prediction

P(x), we train the scrambler S to minimize a predictive reconstruction error CPred
(
P(x),P(x̂(k)

S )
)
.

We refer to this formulation as the Inclusion-Scrambler, as it must learn to include the few important
features which allow reconstruction of the original prediction while maintaining high entropy of x̂S
(Figure 1B). We define the prediction error as the KL-divergence between scrambled and original
predictions. While we could define the conservation loss as the negative entropy of x̂S , the predictor
may not have been trained on uniformly random inputs, meaning a negative entropy penalty might
push the samples to pathological regions of input space. Instead, we minimize the KL-divergence
between x̂S and a background distribution b̃, which is here taken as the mean input pattern across the
training set. The complete training objective for the Inclusion-Scrambler is given in Equation 1:

min
S
λ · KL

[
P(x̂(k)

S )||P(x)
]
+ (1− λ) · KL

[
b̃||x̂S

]
(1)
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Figure 1: (A) The Scrambling network architecture. Only ’Scrambler’ is
trainable (’Predictor’ is pre-trained). (B) Illustration of the Inclusion and
Occlusion scrambling operations.

The intuition be-
hind the Inclusion-
Scrambler is that if
most of x is random-
ized, the small feature
set not scrambled
must coincide with
the most important
features to maintain
predictive accuracy.
Alternatively, we
could train S to
find the smallest set
of features in x to
randomize (i.e., max-
imize conservation
of x̂S) to maximally
perturb P(x̂(k)

S ) from
P(x). These extremal
perturbations should
also coincide with
an important feature
set, not necessarily
the same as those
found by the Inclusion-
Scrambler. This inverse formulation, referred to as the Occlusion-Scrambler, maximizes Equation 1.
In practice, mean squared error is used to reach a target KL-divergence of x̂S rather than maximizing
the KL-divergence unbounded. For both formulations, by training S on a large representative data set,
we learn a parametric model of feature importance whose predictions generalize to new examples,
preventing overfitting to spurious predictor signals.

Part of the novelty of Scramblers is their efficient, probabilistic formulation for discrete input patterns
such as biological sequences. We define x ∈ {0, 1}N×M as a one-hot-coded sequence pattern. Let
S(x) ∈ (0,∞]N be the real-valued importance scores predicted by the scrambler for the N-length
input sequence x. We first broadcast the importance score S(x)i at position i to all channels j,
obtaining Ṡ(x) ∈ (0,∞]N×M , and recast x from values {0, 1} to {−1, 1}. We then use Ṡ(x) as
interpolation coefficients in log-space to get the scrambled input probability distribution x̂S :

x̂S = σ
(
log b̃+ x× Ṡ(x)

)
(2)

In equation 2, σ denotes the softmax σ(l)ij = elij∑4
k=1 elik

. Samples
{
x̂
(k)
S

}K

k=1
drawn from x̂S are

passed to P and gradients are backpropagated to S using either Softmax Straight-Through estimation
(Chung et al., 2016) or the Gumbel distribution (Jang et al., 2016). The importance scores S(x)
take on a meaningful interpretation: when S(x)i is close to 0, x̂S,i becomes b̃i (the background
distribution) and when S(x)i is close to∞, x̂S,i becomes xi (the original input). S(x)i thus defines
the log-probability of keeping input feature i. Inversely, for the Occlusion-Scrambler we replace
x× Ṡ(x) in Equation 2 with x/Ṡ(x). Now, S(x) corresponds to log-probabilities of replacing input
features with samples from the background distribution.

3 Results

In all experiments, the Scrambler consisted of a residual network with 20 blocks of dilated convo-
lutions and filter size 3 (He et al., 2016), and scramblers were trained on input examples separate
from those used in the benchmarks. The baseline method used for comparison, Perturb, exchanges
the categorical value of one letter or pixel at a time and estimates the absolute value in predicted
change as the importance score. Comparisons are made against Perturb (baseline), Gradient Saliency
(Simonyan et al., 2013), Guided Backprop (Springenberg et al., 2014), Integrated Gradients (Sun-
dararajan et al., 2017), DeepLIFT (Shrikumar et al., 2017; using RevealCancel for MNIST and
Rescale from DeepExplain for the remaining tasks; Ancona et al., 2017), SHAP DeepExplainer
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(Lundberg et al., 2017) and the extremal preservation/perturbation methods of Fong et al. (2019;
‘TorchRay’) and Dabkowski et al. (2017; ‘Saliency Model’). For comparison, we also use a version
of the Scrambler with a perturbation identical to L2X and INVASE (referred to as ‘Zero Scrambler’):
minM KL

[
P(x×M(x))||P(x)

]
+ λ‖M(x)‖, whereM(x) is a binary 0/1 mask generator.

3.1 Image feature attribution

We first benchmarked the Scrambler on visualizing important regions in binarized MNIST
’3’ and ’5’ digits given a CNN trained to discriminate between all ten digits (Figure 2).

Figure 2: Attributing feature importance for binarized MNIST digits ’3’ and
’5’. (Upper bar chart) Keeping the top X% pixels according to importance
scores and replacing all other pixels with random values. (Lower bar chart)
Replacing the top X% pixels with random values.

Importance scores
were generated for
all test images and
comparison methods.
All but the top X%
most important pixels
were replaced with
random values, and
the KL-divergence
between original and
scrambled predictions
was measured to ascer-
tain how well the kept
features maintained
the prediction. We
also tested how these
top features perturbed
the prediction when
replaced with random
values. The Scram-
blers proved superior
for each benchmark. The Inclusion-Scrambler identified the upper open regions of ’3’ and ’5’ as
important, while the Occlusion-Scrambler learned to ’flip’ ’3’ into ’5’ and vice versa.

3.2 DNA feature attribution

Figure 3: Attributing importance in a 5’ UTR. MSE is
measured between scrambled and original predictions, when
randomizing all but the top 6 nucleotides. (Top sequence)
Red letters = IF start codon, Blue letters = IF stop codon.

To assess Scrambler detection of
non-linear feature sets, an Inclusion-
Scrambler was trained for the Opti-
mus 5-Prime model (Sample et al.,
2019). This model predicts mean ri-
bosomal load (MRL) from 5’ UTR
sequences and provides an ideal non-
linear evaluation task as complex regu-
latory logic can occur in 5’ UTRs. For
example, in-frame (IF) start and stop
codons exhibit NAND-type logic by
creating an IF upstream open reading
frame (uORF), which represses MRL.
That is, an IF start followed by an IF
stop is necessary to repress MRL, and
an IF start or stop in isolation does
not result in repression. By including
multiple IF stops, we can create challenging NAND-OR-hybrid 5’ UTRs for feature attribution tests.
The Inclusion-Scrambler exhibited an improved ability to identify non-linear input patterns in such
sequences, as exemplified in Figure 3 (two target Scrambler KL-values, 0.125 and 0.25, were tested).

3.3 Protein feature attribution

In recent work by Chen et al. (2019) a set of computationally generated coiled-coil
dimers were designed to have high binding specificity to their cognate binding partner.
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Figure 4: (A) The joint and siamese Scrambler architectures for protein
binder attribution. (B) Example attribution. Hydrogen bonds at the
designed binding interface are marked with dashed red boxes. (C) 3D-
visualization of binder pair structure. Discovered HBNet residues are
colored green. (D) Precision-recall curves for discovering the designed
HBNet positions, based on importance scores. (E) Keeping the top
X% residues according to importance scores and replacing the rest
with random amino acids (top), or replacing the top X% with random
amino acids (bottom), measuring prediction KL-divergence. Average
Precision for discovering HBNet positions annotated on each bar.

Networks of hydrogen
bonds were built at the
dimer interface to induce
binder specificity as part
of the design process
using HBNet (Boyken
et al., 2016; Maguire et
al., 2018). We created a
negative training set from
the original 170,000 de-
signed interacting pairs by
randomly pairing binders
not designed to interact.
We used these data to train
an RNN model that could
predict dimer binding.
Feature attribution for this
model is challenging; the
naive solution would be to
mark hydrophobic residues
as important to knock
out binding ability to any
binding partner. However, a
more interesting question is
if we can recover HBNets,
i.e., the rules used to make
binding specific for a
designed pair.

We hypothesized that a joint
Occlusion-Scrambler (Fig-
ure 4A), which sees both in-
put binders and can learn to
discriminate between bind-
ing and non-binding pairs, would exploit the hydrophobic residues to knock out binding. In contrast, a
siamese architecture that only sees one binder would need to learn features that are good determinants
of both binding and non-binding pairs, such as HBNets.

HBNet residues were extracted from a dimer test set to validate Scrambler importance scores and
benchmark performance. In Figure 4B-C we visualize an example dimer pair, where the residues in
the dimer structure are colored according to importance. Figure 4B shows that the joint Scrambler
marks fewer HBNet positions and more leucines as important than the siamese model. Precision-
recall curves were generated for each feature attribution method using HBNet residue positions as
ground truths. We first compared the Scrambler to methods based on local approximation (Figure
4D). While the joint Scrambler discovered significantly more HBNet positions than other methods –
likely because a generative model trained on many examples learns more generalizable attributions
– the siamese Scrambler was superior with an average precision of 0.61. Finally, in Figure 4E we
compared the Scrambler to similar methods based on either real-valued input perturbations (Fong
et al., 2019, ‘TorchRay’; Dabkowski et al., 2017, ‘Saliency Model’) or discrete feature selection
(Chen et al., 2018; Yoon et al., 2018; using the ‘Zero Scrambler’ to approximate both methods). The
Inclusion and Occlusion-Scramblers had higher precision in recovering HBNet positions, and their
top scored positions had a greater ability to either preserve or distort the RNN network predictions.

4 Conclusion

We presented the Scrambler Neural Network, a feature attribution method based on generative
modeling tailored for biological sequence prediction. The Scrambler outperformed other methods on
a number of visual- and sequence-predictive tasks. We anticipate that the Scrambler will be a useful
tool to discover non-linear feature attributions for an array of biological models.
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