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1 Introduction

Modern DNA sequencing technologies, in combination with appropriate copy number analysis
methods, allow the number of copies of any genomic region to be determined [1]. However, the
sequencing-derived read out only gives the current copy number state but does not directly indicate
the sequence of events that lead to the observation. Our objective in this work is to use collections of
sequencing-derived cancer copy number profiles (CNPs) to infer the sequence of copy number altering
events that occurred to give rise to those perturbed cancer genomes. While there are many algorithms
for calling CNPs from raw sequencing data [2} 3| 4} 5], we are unaware of any computational
techniques to infer the sequence of evolutionary events that have led to the observed CNP based on
only copy number data. Major studies have instead relied on heuristics, for example, [6] employed
the rule that tumours were considered to have undergone whole genome doubling (WGD) if greater
than 50% of their genome had a major copy number (the more frequent allele in a given segment)
greater than or equal to two.

Our novel contribution in this paper is to introduce a fully generative model based on deep reinforce-
ment learning to address this currently unmet need in evolutionary cancer modelling which we name
RLevolution . We cast the problem as genomic state evolution governed by a Markov decision
process that we solve using reinforcement learning (Figure[IB). We show that we are able to infer
evolutionary trajectories from CNPs more accurately than heuristic approaches using simulated data
and provide a quantitative basis behind qualitative evolutionary features previously identified from
real cancer data sets.

2 Model

2.1 Definitions A copy number profile is a sequence sy of N non-negative integer indicating the
number of copy for each position on the genome across different chromosomes. For example, in our
case, we consider approximately 2,200 loci on the genome, and thus each CNP is a vector of size
2,200, where each integer in the vector indicate the number of copies for the corresponding locus
on the genome. The CNP is the result of an unknown number 7" sequential copy number alteration
(CNA) events, A = {ar, ..., a1}, that transforms a normal genomic state sy to sg. We define a
trajectory T as the collection of genomic states {sr, ..., s1, So} that the genome passes through as
it mutates. This can equivalently be understood as the collection of actions {ar, ..., a1, So} since s;

is defined by the action a; taken on the previous state s;_; and thus P(77) = p(sr) Hthl plag)st).
Note, we approach this from a backwards-in-time perspective where we seek to find a trajectory from
the observed cancer CNP back to the original normal, unaltered genome.

Given a particular observed cancer genome CNP sy = S, we are interested in characterising the
conditional probability or likelihood of trajectories 7 that transforms the cancer genome back to
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Figure 1: Modelling copy number evolution. A Cartoon illustration of a sequence of genomic
alteration events which transform a normal genome into a cancer genome. Copy number calling
methods estimate copy number profiles from array- or sequencing-based data. Our contribution
is to develop a model RLevolution that uses the copy number profiles to infer the evolutionary
sequence. B Modelling the evolution of the genomic state sequence as a discrete Markov decision

process requires us to be able to specify the transition probabilities 7 (c).

P(rr)

a normal genome s, that is P(7r|sg) == P(rp|tr € {7} : s = S}) = = POl
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transforms s into sg = .S, or otherwise zero.

We are interested in viewing this as a Markov decision process (MDP) where we wish to learn a
policy 7(a|s) that defines the probability distribution over CNA events (“actions") given a particular
genomic state. We will solve the learning problem of obtaining 7(a|s), from the previously defined
P(77), through reinforcement learning [7].

2.2 Reinforcement learning approach: Q-learning The goal is to find an optimal trajectory
7, with the maximum likelihood 7 = argmax,, P(7r|sg) for a given CNP. This will require
identifying an optimal policy 7*(a|s) for which we will use a Q-learning approach [§]].

We first introduce a special action, denoted by END, which indicates the end of the MDP (namely,
the start of the biological evolution process). Thus, we could write the probability in the following
form as P(rr) = H?:o q(agy1, st), where apy1 = END, spy1 = sy and ¢(END, st) = p(s7),
q(at11,8t) = plass1]st). Therefore the action ar is always to convert state s7_; into the normal
genome state s7. Notice that the definition of P(7r|sg) is not changed.

The probability of each trajectory sampled according to our policy could be defined as II(77|sg) =
17—, 7(ass+1s:) and ap., = END.

We wish to find a policy which leads to a distribution over trajectories II(7r|S) that is close to the
(unknown) true distribution of evolution trajectory P(7r|S).

2.3 Loss function We setup an objective to minimise the Kullback-Leibler divergence between
the approximating and true distributions and optimise the network parameters ¢:
P(rrls)
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We can treat this as a reinforcement learning problem by defining the reward to be the log-likelihood
of each CNA, i.e. (s, a;) = log g(at, s¢) and solve through a Q-learning algorithm according to the
following theorem:

Theorem 1 If the gradient of log(ms(als)) is bounded, the following optimization problem:
Hb)in E.E, [(Q¢(s, a) — 7(s,a) — softmax(Qy (s, a’)))Q] )
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Figure 2: A deep convolutional neural network model for computation of 74(a|s). Because
of the large search space for actions, the parametric model 74 (a|s) is separated into three parts:

T, (€]$), Tg, (sD|S, ¢) and 7y, (ep|s, sp, ¢).

where

Qq(s,a) = Cy(s) +logme(als), Co(s) = —KL(7y(s|s), p(7s|s))

softmax(Qy(s’,a’)) = log (Z eXPQd’(S/’a/)) :7(st, a¢) = logq(ay, st)

is equivalent to solving Eq. [1)in the sense that solving this optimisation problem is the same as finding
the critical point for Eq. [I| when the action is not the special action, i.e. a # END.

We could get the exponential of reward ¢(ay, s;) here from empirical studies [9].

2.4 Training samples Our loss function requires expectations over copy number profiles s and
actions a to compute equation (2). In Theorem 1, no specific distribution is required for the expecta-
tion, as all distributions provide a tight upper bound for the true target. This is critical since known
distributions for these are unavailable but this insight means we are still able to train our model. We
sampled from a probability distribution over CNPs with a hierarchical construction such that the
number of CNAs needed to form the CNP, i.e. p(T'), has a geometric distribution. We use a rate
= 0.98, so on average, we expect CNPs to contain ﬁ = 50 number of CNAs. Therefore, the

probability of sampling CNPs with differing number of CNAs is proportional to 0.98”. Then, given
T, we can sample CNAs from the action space as outlined previously. Thus, the total number of
CNPs is 50 x 107,800 =~ 5,000, 000.

2.5 Model Architecture We have built a deep neural net for the Q-learning algorithm shown in
Figure[2] The main characteristic of this net architecture is that we have divided the action space
into three separate parts because our action space is extremely large, including all possible copy
number alteration events, which is on the scale of 10°. We have also included other nature of human
genome into our model. For example, we have developed a special gated unit for WGD detection.
We have also enforced a special structure for linear layers so that the model output will be invariant
to chromosome label permutations.

3 Synthetic data experiments

We first conducted a simulation experiment in which we generated artificial copy number profiles. We
simulated 100 samples in total (example shown in Figure[3]A), with half having a WGD event at some
time point during the evolution. On average, we simulated approximately 50 copy number alterations
for each sample and the probability for each type of CNA was approximated from characteristics
identified in previous studies [9]. The step at which WGD occurs was also randomly selected but
concentrated at around the 10th event during simulated evolution, following evidence that WGD is
usually an early event [[10].
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Figure 3: Synthetic Experiments. (A) A simulated copy number profile consisting of multiple CNA
events and WGD. (B) Inferred actions trajectory for the sample in (A) (C) Inferred trajectory lengths
for simulated CNPs with (+) and without (-) WGD. (D) Relative timing of inferred WGD events
compared to ground truth.

We have also proposed two heuristic methods for comparison. For Heurl, we treat each continuous
copy number segment as an individual CNA event and thus the number of evolutionary actions needed
to generate a CNP is simply a function of the number of breakpoints in the CNP. For Heur2, we first
examine the average genome-wide copy number of each tumour. If it is greater than 1.7 [10], we
classify the tumour as having undergone WGD and change the copy number baseline accordingly.
We then consider if the average copy number of a chromosome is above or below the baseline by
more than 50% then we say that chromosome arm has been duplicated or lost. We then treat the
remaining CNV in similar way as Heurl.

We applied RLevolution to the simulated samples and from each obtained a trajectory consist-
ing of all the CNA events (actions) that modified an otherwise normal genome into the observed
abnormal cancer genome (example given in Figure [3IC). Figure 3B shows that when we examined
the length of the trajectories inferred using RLevolution , in comparison to the ground truth and
the two heuristic approaches, we found that the number of steps required by RLevolution was
significantly less than those required by the heuristic methods demonstrating that RLevolution is
able to identify more parsimonious evolutionary trajectories than the segmental approach used by
our heuristic benchmarks. Figure shows that, in the absence of WGD, RLevolution was able to
correctly infer the number of evolutionary events in multiple instances whilst the heuristic methods
substantially overestimate. In the presence of more complex WGD-affected samples, RLevolution
over-estimates the number of CNA events in these genomically complex samples but less so than
the heuristic approaches. Importantly, Figure 3D shows that the relative timing of the inferred WGD
event given by RLevolution correlates with the true timing.

We next examined if the exact sequence of actions predicted by RLevolution matched the true
sequence. We found our RLevolution could recover 60% of the history for samples without WGD
and 40% for samples with WGD. For Heurl and Heur2, they could only recover 40% for samples
without WGD and 10-30% for samples with WGD.

4 Discussion

We have described a novel approach for learning the evolutionary trajectories of cancers from whole-
genome DNA copy number profiles. Further experimental work will be required to validate our
findings but our approach represents a capability that currently does not exist in the computational
biology literature. Our model is a platform for further innovation to include improved scalability
to achieve single-nucleotide resolution and the incorporation of point mutations. It would also be
desirable to develop heterogeneous policy models to allow us to account for tumour heterogeneity.
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