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Abstract
Existing methods for learning latent representa-
tions for single-cell RNA-seq data are based on
autoencoders and factor models. However, rep-
resentations learned by autoencoders are hard
to interpret and representations learned by fac-
tor models have limited flexibility. Here, we in-
troduce a framework for learning interpretable
autoencoders based on a regularized linear de-
coders. It decomposes variation into interpretable
components using prior knowledge in the form
of annotated feature sets obtained from public
databases. Through this, it provides an alterna-
tive to enrichment techniques and factor models
for the task of explaining observed variation with
biological knowledge. Benchmarking our model
on two single-cell RNA-seq datasets, we demon-
strate how our model outperforms an existing fac-
tor model regarding scalability while maintaining
interpretability.

1. Introduction
Advances in single-cell technologies enabled constructing
large cell atlases cells across different tissues and species
(Regev et al., 2017; The Tabula Muris Consortium et al.,
2019). In recent years, machine learning methods have been
proposed to learn a compact latent representation to address
gene expression denoising and data integration (Lopez et al.,
2018; Eraslan et al., 2019), and perturbation modeling (Lot-
follahi et al., 2019b;a). However, current methods are not
able to incorporate prior-knowledge into their learning al-
gorithms. This work focuses on representation learning by

1Institute of Computational Biology, Helmholtz Center Mu-
nich, Neuherberg, Germany 2Department of Mathematics, Tech-
nical University of Munich, Munich, Germany 3School of
Life Sciences Weihenstephan, Technical University of Mu-
nich, Munich, Germany. Correspondence to: Sergei Rybakov
<sergei.rybakov@helmholtz-muenchen.de>, Fabian J. Theis
<fabian.theis@helmholtz-muenchen.de>, F. Alexander Wolf
<alex.wolf@helmholtz-muenchen.de>.

Presented at the 15th Machine Learning in Computational Biology
(MLCB) meeting. Copyright 2020 by the author(s).

exploiting prior-knowledge for single-cell data. Differences
in gene expression between cells can be decomposed into
observed and unobserved factors. These factors can include
non-biological factors such as batch effect, or biological
factors, which can often be related to existing knowledge
about biological processes and pathways. Recently, (Svens-
son et al., 2020) introduced an interpretable factor model
in the form of a linear autoencoder, however, these authors
do neither include prior knowledge, nor aim at explaining
variation using prior knowledge.

Among existing models, only the factorial single-cell la-
tent variable model (Buettner et al., 2017) can jointly infer
factors that capture different sources of single-cell tran-
scriptome variations, including i) variation in expression
attributable to pre-annotated sparse gene sets representing
biological knowledge, ii) effects due to additional sparse
factors that are meant to explain biological effects, and
iii) dense factors that are expected to affect the expression
profile of the majority of genes, and often represent tech-
nical confounders. This model also allows the assignment
of genes to each annotated factor to be refined in a data-
driven manner. By that, it offers a powerful alternative to
traditional enrichment techniques, which are used to con-
textualize differential expression signatures with biological
knowledge.

In f-scLVM, deterministic approximate Bayesian inference
based on variational methods is used to approximate the
posterior over all random variables of the model. The f-
scLVM python package (slalom) is a custom implementation
of the variational Bayesian scheme developed for the model,
and we use it as main reference for our benchmarks. It is
important to note that the variational Bayesian formulation
of the method affects its scalability, and complicates the
inference of values of the latent factors for new and out-of-
sample data points after the model was already trained.

Here, we present a scalable alternative to f-scLVM to learn
latent representations of single-cell RNA-seq data that ex-
ploit prior knowledge such as Gene Ontology, resulting in
interpretable factors. Our frequentist alternative also allows
easier inference of the latent factors for out-of-sample data.
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2. Model
Our autoencoder can be formulated as:

Y ≈ fθ(Y )WT (1)

Where fθ(Y ) is a neural network with learnable parameters
θ. This network takes Y , the gene expression matrix of
size N × G, as an input and produces a matrix of factor
loadings with size N × K. W in the formula above is a
learnable parameter matrix of size G × K. A column of
W corresponds to weights for all genes for a given factor.
Analogously, a row of fθ(Y ) corresponds to loadings of all
factors for a given cell. Also, note that the model has the
nonlinear encoder fθ(Y ) and the linear decoder zWT .

After the training phase, the encoder fθ(Y ) can also be used
to project out-of-sample data to the learned latent space.

If there are observed covariates X , i.e. features that are
known prior to training, such as batch or cell type. They can
be incorporated additively into the model 1 as

Y ≈ fθ(Y )WT + dφ1(eφ2(X)) (2)

Where eφ2(X) is an encoder network taking covariates ma-
trix X and dφ1(·) is a decoder network. In particular the
linear model can be used in place of the decoder and encoder
for the covariates X , that is dφ1

(eφ2
(X)) = XΦT1 .

Only the form 1 (the model without observed covariates)
will be discussed further.

There are three kinds of factors in the model.

1. Annotated factors correspond to gene sets from path-
way databases, such as MSigDB (Subramanian, 2005)
or Reactome (Jassal et al., 2019). For these factors we
enforce structured sparsity informed by the gene sets.

2. Sparse unannotated factors represent biologically
meaningful factors that don’t have annotations. These
factors are assumed to be generically sparse.

3. Dense factors correspond to effects on the expression
of large numbers of genes, no sparsity is enforced for
this type.

To model annotated and unannotated factors in W , we need
to introduce the right kind of structured sparsity regulariza-
tion for the columns of W .

The decomposition 1 is fitted to Y using regularized L2 loss

L(θ,W ) =
1

N

N∑
n=1

||yn − fθ(yn)WT ||22+

+
λ0
N

N∑
n=1

||fθ(yn)||22 +Rλ1,λ2,λ3
(W ) (3)

Where λ0−3 are regularization hyperparameters, the term
Rλ1,λ2,λ3(W ) is a sparsity inducing regularization function,
and yn denotes the n-th row of the data matrix Y (n-th cell).
L(θ,W ) can be optimized using the mini-batch stochastic
gradient descent algorithm.

Rλ1,λ2,λ3(W ) in 3 consists of two additive terms

Rλ1,λ2,λ3(W ) = R1
λ1,λ2

(W ) + λ3R
2(W ) (4)

The first term R1
λ1,λ2

(W ) induces structured sparsity on the
level of individual genes in each factor (individual elements
in each column of W ).

R1
λ1,λ2

(W ) = λ1
∑
k1

||W:, k � (1− I:, k)||1+

+ λ2
∑
k2

||W:, k||1 (5)

Where k1, k2 correspond to annotated factors and sparse
unannotated factors respectively. W:, k � (1− I:, k) means
Hadamard (element-wise) product between the k-th column
of the factor weights matrix W and the k-th column of
the binary annotation matrix I . The matrix I , which is
used for the annotated factors, can be formed from pathway
databases, such as Reactome or MSigDB, with Ig,k = 1
if the gene g is present in the pathway k and Ig,k = 0
otherwise. This means that ||W:, k � (1− I:, k)||1 equals to
the sum of the absolute values of weights for genes in the
factor k that are inactive in the annotation of the factor k
(genes that have Ig,k = 0).

The second regularization term R2(W ) in 4 is responsible
for deactivating unneeded factors. We use group lasso for
this.

R2(W ) =
∑
k

||W:, k||2 (6)

The group lasso ensures that all genes in a factor (a col-
umn of the matrix W ) are either included or excluded
from the model together. This penalty exploits the non-
differentiability of ||W:, k||2 at W:, k = 0; setting whole
columns of W to exactly 0.

To minimize 3, the stochastic proximal gradient algorithm is
used. This algorithm is employed here because the ordinary
stochastic gradient descent algorithm doesn’t account for
the points of non-differentiability in Rλ1,λ2,λ3(W ); thus, it
can’t enforce the required structured sparsity.

Lets denote the part of the objective function L(θ,W )
(3) without the regularization Rλ1,λ2,λ3(W ) by F (θ,W ).
Then, to minimize the objective function 3, we use the up-
date scheme

θ(t+1) = θ(t) − η∇θF̂ (θ,W )

W (t+1) = Prox
ηRλ1,λ2,λ3

(W (t) − η∇W F̂ (θ,W )) (7)



Learning interpretable latent representations with annotations of feature sets

Where F̂ (θ,W ) denote the function F (θ,W ) calculated for
a mini-batch of samples, η is a learning rate. Prox

ηRλ1,λ2,λ3
(·)

denotes the proximal operator of Rλ1,λ2,λ3(W )

Prox
ηRλ1,λ2,λ3

(V ) = arg min
L

[1
2
||L− V ||2F+

+ ηRλ1,λ2,λ3(L)
]

(8)

Using the result from (Yu, 2013), it can be shown that the
proximal operator 8 has a closed-form expression, which is a
composition of the closed-form expressions for the proximal
operators corresponding to R1

λ1,λ2
(W ) and λ3R2(W ).

3. Results
To validate the model, we considered a dataset where some
sources of variation are known. In (Kang et al., 2017) 8
Lupus patients were stimulated with interferon (IFN) β.
We expect to see upregulation of the pathways related to
interferon signaling.

The autoencoder with only annotated factors was trained
on the dataset from the paper with 1k highly variable genes
selected, using the Reactome database for the annotated
factors. The scatter plots of factor loadings of the an-
notated factors corresponding to the gene sets from Re-
actome “INTERFERON SIGNALLING” and “SIGNAL-
ING BY THE B CELL RECEPTOR BCR” (Figure 1a)
show clear separation of stimulated cells from control cells.

Next, we sought to analyze celltype-specific pathways by
using the pathway related to B cells. We can also see a clear
separation of B cells from the rest (Figure 1b).

Also we compared our results with f-scLVM. The python
implementation of f-scLVM (slalom) was used for the com-
parison. In the table below the time to train both models is
given.

Kang17
13.5k cells

Macosko15
13.5k cells

f-scLVM (slalom) 2203 1629
Interpretable AE (this work) 8 7

Table 1. Runtime comparison in minutes.

The time is provided for the 13.5k cell subset of the retina
dataset from Macosko et al. (2015) and for the dataset from
Kang et al. (2017). For both datasets the genes that are not
in the annotations from Reactome were filtered out, and also
highly variable genes were selected to limit the number of
genes to about 1k. It can be seen from the table that slalom
requires 270 times as long as the interpretable AE. More
importantly, while it is still manageable for datasets of this
size, it becomes near impossible to use slalom for much
larger datasets, which are common in single cell genomics.
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Figure 1. Factor loadings in the interpretable AE.

In order to check how well both models explain variation
in the Kang et al. (2017) dataset, several terms related to
interferon beta were selected, and their loadings were used
individually to train uni-variate binary logistic regression
on the experimental condition (stimulated vs. control) as
class label (Figure 2). Two setups of f-scLVM were used for
comparison: f-scLVM without any dense and sparse unan-
notated factors and f-scLVM with 3 dense factors (default
setting). The autoencoder provides better accuracy, and thus
better separation, across all factors except for ”ANTIVI-
RAL MECHANISM BY IFN STIMULATED GENES”.

The figure 2 shows the resulting accuracies for training data
of logistic regressions trained with the loadings of the in-
dividual factors. Two setups of f-scLVM were used for
comparison - f-scLVM without any dense and sparse unan-
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Figure 2. Accuracies of logistic regressions trained on loadings of
individual factors vs condition (control, stimulated) for 3 models
- autoencoder, f-scLVM without dense and sparse unannotated
factors, f-scLVM with 3 dense factors (default setting).

notated factors and f-scLVM with 3 dense factors (standard
settings). The autoencoder provides better accuracy, and
thus better separation, across all factors except for ”ANTIVI-
RAL MECHANISM BY IFN STIMULATED GENES”.

It is interesting that for both autoencoder model and
f-scLVM with three dense factors the term which gives
the highest accuracy (the best separating term) is “IN-
TERFERON SIGNALLING” (see Figure 2 for the
accuracies of classification, Figure 1a for the visualization).
However, f-scLVM without dense factors selects “ANTIVI-
RAL MECHANISM BY IFN STIMULATED GENES”
for the separation (Figure 2). It is not clear why training
f-scLVM with dense factors, which should account for
confounding sources of variation, leads to significant
changes in the loadings of the factors which should
meaningfully explain biological variation in the data.

Next, we applied our model on a recent, comprising of
immune and epithelial cells collected via bronchoalveolar
lavage from healthy controls, and patients with moderate
and severe COVID-19 Liao et al. (2020). The 10 most
important pathways, explaining the variation in the dataset,
by L2 norm of their parameter vectors (columns of W in 1)
are

1. IMMUNE SYSTEM
2. METABOLISM OF PROTEINS
3. HEMOSTASIS
4. TCA CYCLE AND RESPIRATORY ELECTRON

TRANSPORT
5. ADAPTIVE IMMUNE SYSTEM
6. 3 UTR MEDIATED TRANSLATIONAL REGULATION
7. TRANSLATION

8. METABOLISM OF LIPIDS AND LIPOPROTEINS
9. INTERFERON SIGNALING

10. MRNA PROCESSING

In order to validate interpretability of the learned latent
space of pathways, we again investigated factor loadings of
the “INTERFERON SIGNALING” term.

The figure 3 shows the separation of control and activated
immune cells in moderate and sever COVID-19 in “INTER-
FERON SIGNALING” term.
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Figure 3. Factor loadings of 2 terms for the four cell types from
the COVID-19 dataset

4. Discussion and future work
We presented an end-to-end trained autoencoder that can
exploit biological knowledge from various databases (Sub-
ramanian, 2005; Jassal et al., 2019) to learning interpretable
representations of data.

The current model can be extended by learning a more
powerful decoder. This requires adding non-linearity to the
decoder to learn more complex representations. However,
non-linear functions can not easily be incorporated into
to model while preserving feature factorization. Gradient-
based feature importance methods have been shown to be
applicable in this context for image data (Erion et al., 2019).
We leave further extensions in this direction for future work.

The code for the model and the accompanying data can
be obtained from https://github.com/theislab/
InterpretableAutoencoders.

https://github.com/theislab/InterpretableAutoencoders
https://github.com/theislab/InterpretableAutoencoders
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