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Abstract

RNA editing is a major post-transcriptional modification that contributes significantly to transcrip-
tomic diversity and regulation of cellular processes. Exactly how cis-regulatory elements control RNA
editing appears to be highly complex and remains largely unknown. However, with the improvement
of computational methods for detecting and quantifying RNA editing from large-scale RNA-seq data,
it becomes possible to build computational models of RNA editing. Here we report our attempt to
develop machine learning models for predicting human A-to-I editing by training on large number of
highly confident RNA editing sites supported by observational RNA-seq data. Our models achieve
good performance on held-out test evaluations. Furthermore, our deep convolutional model also
generalizes well to dataset from a controlled study.

1 Introduction

RNA editing is a post-transcriptional process where the nucleotide sequence of RNA transcripts is modified from its
template DNA sequence by substitution, insertion, or deletion[1]. In animals, the most prevalent type of RNA editing
is the conversion of adenosine (A) into inosine (I), also known as A-to-I editing[2]. This is catalyzed by adenosine
deaminase acting on RNA (ADAR) family of proteins, which binds co-transcriptionally to the double-stranded regions of
RNA (dsRNA)[2]. ADAR proteins stochastically edit adenosines and the editing frequency is determined by cis-acting
elements (RNA sequence and structures) and trans-acting cellular states[3]. A-to-I editing is involved in the regulation
of many other cellular processes, such as RNA splicing[4], mRNA stability[5], and innate immune response against
dsRNAs[6]. Additionally, A-to-I editing increases transcriptomic diversity, through recoding of the resulting amino
acids[2] and altering microRNA processing[7]. Aberrant editing can result in cancer[8] and diseases in neurological[9],
cardiovascular[5], and autoimmune systems[6].

In spite of its prevalence in humans, our understanding of the exact mechanism and regulation of A-to-I editing is
still very limited[10]. The editing occurs in dsRNA region and the two bases immediately next to the ‘A’ influence
the activity of ADAR protiens[11]. Although it is proposed that A-to-I editing is regulated by both the sequence and
structural context, there is no simple ‘motif’ that can explain A-to-I editing[3, 10]. Therefore, there has yet been
any ‘editing code’ that can predict A-to-I editing sites given an RNA sequence[10], which is in contrast with other
RNA processes where computational codes have been in active development, such as splicing[12–15], RNA protein
binding[16–19], and alternative polyadenylation[20, 21]. Recently, there has been an increased interest in A-to-I
‘editing code’ because of its potential to help with our understanding of RNA editing and applications in diagnostics[10]
and RNA therapeutics[22, 23].

Most of the previous computational methods to study RNA editing focused on the accurate detection of editing events
from experimental data. This problem is challenging due to technical artifacts and false positives from single-nucleotide
polymorphisms (SNP)[24]. Conventional detection methods use series of filters to identify RNA editing sites from
RNA-seq[25–31]. Recently, there have been several attempts to use machine learning approaches for more accurate
detection of RNA editing[32–34].

Meanwhile, few groups have tackled the prediction problem, using carefully designed experiments to study the editing
profiles under different sequence contexts[11, 35]. Most recently, Liu et al. [35] designed experiments to study A-to-I
editing by introducing point mutations in the vicinity of three known A-to-I editing sites via CRISPR/Cas-9. The
resulting mutagenesis data was used to train editing site-specific gradient boosted trees to predict RNA editing frequency
from sequence and secondary structure computed by RNAfold[36]. The site-specific models showed good performance



Figure 1: An overview of the deep convolutional model.

over the variants around the same editing site, but did not generalize across different editing sites, potentially due to
the small dataset size with only three sites. Nevertheless, this study demonstrated the potential of machine learning
approach to learn regulatory features of A-to-I editing.

Here, we take a different approach of modelling A-to-I editing by training on a larger dataset consisting of highly
confident editing sites that are observed across many RNA-seq data. Due to the challenges in accurate quantification of
RNA editing frequencies, we focus on binary classification models for predicting whether a given ‘A’ is likely edited or
not based on its surrounding RNA sequence and structural context. To test if meaningful features can be learned from
the observational dataset without controlled experiments, we evaluate whether our models generalize to the mutagenesis
dataset from Liu et al. [35].

2 Methods

2.1 Dataset Construction

In order to train predictive models for classifying whether a given ‘A’ is edited or not, a balanced dataset consisting
of edited and non-edited ‘A’s is created. High quality editing sites are curated from REDIPortal[37], which contains
4,668,125 A-to-I editing sites previously reported in the literature. Due to the challenges associated with RNA editing
detection[24], REDIPortal contains many false positives. Therefore, Genotype-Tissue Expression (GTEx)[38] is used
to select highly confident editing sites that are supported by: 1) at least 1,000 RNA-seq experiments (out of 2,642
with the corresponding whole genome sequencing), and 2) at least 50 body sites (out of 55 in GTEx). With these two
filtering criteria, there are 25,212 edited ‘A’s that are well supported across many tissues and experiments.

For each of the curated editing sites, a negative example is sampled uniformly from the non-edited ‘A’s in the vicinity
of 400bp. The size of the sampling window is chosen to ensure that the negative set includes a good mixture of: 1)
examples close to the editing sites, which could be challenging for models to distinguish as they share most of genomic
context, and 2) examples at a distance to help the models generalize to regions outside of the editing sites. Each of the
sampled ‘A’s are checked to make sure they have not been reported to be editing sites in the literature. To mitigate the
risk of learning spurious features, additional analysis is performed to check if the distribution of non-editing sites are
similar to the editing sites across different 1) genomic regions (e.g. introns, UTRs, and coding regions), and 2) repeated
elements (e.g. Alu, non-Alu, and non-repeat). The final dataset consists of 50,424 examples.

2.2 Computing RNA secondary structure

Although the features controlling A-to-I editing is mostly unknown, it is proposed that dsRNA regions and structural fea-
tures, such as bulges or loops, influence the ADAR activity[10]. To compute structural features, we use RNAplfold[36]
with a wrapper, created by the authors of RNAcontext[39]. The wrapper produces per-base probabilities of it being in 5
different types of structures: paired, hairpin loop, inner loop, multi-loop, or external region. ‘-W 240 -L 160 -u 1’ is
used for running RNAplfold.

2.3 Models

We consider four different types of machine learning models to classify whether a given ‘A’ is edited or not: logistic
regression (LR), support vector machines (SVM), gradient boosting (GB), and deep convolutional neural network
(CNN).

For LR, SVM, and GB models, input features are derived from 42bp region around a given ‘A’. We empirically observe
that context larger than 42bp does not improve the performance of the models. The inputs consist of three sets of
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Table 1: Performance of the models on the held-out chromosomes

Models Accuracy auROC F1-score2

LR 0.853 0.924 0.852
SVM 0.880 0.941 0.878
GB 0.885 0.946 0.882
CNN 0.914 0.965 0.913

features: 1) the two bases neighbouring ‘A’, 2) identities of 14 non-overlapping 3-mers within the 42bp region, and 3)
computed structure represented by per-base probabilities. Features 1) and 2) are one-hot encoded.

For the deep convolutional network, an overview of the model architecture is shown in Figure 1. The model employs a
stack of 1D convolutional blocks with residual and skip connections[40, 41], which have shown success on tasks in
language modelling[42], speech recognition[43], and computational biology[15]. The model uses sequence context and
the computed structures to predict how likely a given ‘A’ will be edited. The input to the model is a concatenation of
one-hot encoded RNA sequence and per-base probabilities, computed as described in section 2.2. The input is convolved
by 12 residual blocks with skip connections every 2 blocks. Each residual block includes a Squeeze-Excitation (SE)
operation[44] which explicitly models the interdependence between the channels to help the CNN model focus on the
most relevant cis-regulatory features. After the last residual block, a sinusoial positional embedding[45] is added to the
feature map which is then summarized via global pooling over sequence positions. The combination of the positional
embedding with global pooling allows the model to be used with variable input size. We empirically find that, unlike
the other three models, larger context up to 400bp improves the performance of the CNN model. All inputs during
training are 400bp in length.

One major advantage of the CNN model is data driven feature discovery, removing the need for manual feature
engineering from our limited knowledge of RNA editing. Furthermore, the CNN architectures have shown to be more
efficient in modelling long range interactions compared to the competing architectures. Lastly, the CNN model with
global pooling and the positional embedding can handle flexible input size without much change in the number of
parameters, while the number of parameters for the other three models scale linearly with the input size. This could be
important for the future development of the model, as A-to-I editing can be influenced by long range interactions up to
10,000bp in length[46].

3 Results

3.1 Evaluation on held-out dataset

The models are evaluated on 20 percent held-out data from chromosomes 2, 14, 15, and 17, for reasons explained in
section 3.3. The results are summarized in Table 11. All of the models achieve good performance with the CNN model
outperforming the other three.

3.2 Evaluation on dataset without the weak motif

Although there is no well established sequence motif for ADAR proteins, it is hypothesized that they prefer editing sites
without 5’G and with 3’G. Even though this is a weak motif, as 3 out of every 16 non-editing sites can have this features
by chance, this can be important information the models rely on, which is evidenced by the large weights on these
features in LR model. Therefore, the examples without these features could serve as more challenging test subsets.

The held-out testset is split into three groups: 1) sites without 5’ G, 2) sites with 3’ G, and 3) sites without 5’ G and
with 3’ G. The results are summarized in Table 2. All the models achieve comparable performance as when they are
evaluated on the full held-out set from section 3.1.

3.3 Evaluation on the mutagenesis dataset

To evaluate if the models generalize beyond the observational dataset used in training, the mutagenesis dataset created
by Liu et al. [35] is used. The study generated 200-300 single and double point mutations for each of the three ADAR
editing sites (NEIL1, TTYH2, and AJUBA) from chromsomes 14, 15, and 17, which the models are not trained on.
For each mutated sequence, the dataset reports the measured RNA-editing frequency. We further process this dataset

1We calculated accuracy and f1-score using the optimal threshold which maximizes accuracy.
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Table 2: Performance of the models on the three subsets of the held-out chromosomes

Without 5’G With 3’G Without 5’G and With 3’G

Models Accuracy auROC F1-score Accuracy auROC F1-score Accuracy auROC F1-score

LR 0.851 0.923 0.850 0.852 0.924 0.852 0.851 0.926 0.851
SVM 0.877 0.941 0.875 0.883 0.943 0.881 0.879 0.944 0.878
GB 0.882 0.944 0.878 0.891 0.946 0.888 0.891 0.947 0.889
CNN 0.912 0.964 0.911 0.915 0.967 0.914 0.916 0.967 0.915

Table 3: Performance of the CNN model on the mutagenesis dataset

Editing substrate Accuracy auROC F1-score

NEIL1 0.841 (±0.028) 0.881 (±0.030) 0.844 (±0.030)
TTYH2 0.876 (±0.029) 0.917 (±0.028) 0.875 (±0.031)
AJUBA 0.752 (±0.047) 0.742 (±0.060) 0.788 (±0.048)

by only selecting samples with high or low editing frequencies and assigning positive or negative labels, respectively.
The frequency cutoffs are chosen such that the resulting test set is roughly balanced and contains sufficient number
of samples for meaningful evaluations. The processed set contains 161, 122, and 83 samples from NEIL1, TTYH2,
and AJUBA, respectively. Even though our models are not trained on classifying editing sites by frequencies, we
hypothesize that because editing sites with higher editing frequencies would have ‘stronger’ editing features, our models
could generalize to this new task of distinguishing between the two extreme editing frequencies. Table 3 summarizes
the results3 from only the CNN model, as the other three models performed only slightly better than random. This
demonstrates that while the other three models fail to generalize, the CNN model learns features that can be used across
different datasets and tasks. This could be attributed to using large dataset to train an expressive CNN model and
discover features in a data-driven way.

Performance of the CNN model is slightly worse than on the held-out dataset. This is expected because the model
is trained on tissue samples from GTEx whereas HEK293T cell line was used to generate the mutagenesis dataset.
Additionally, classifying sites by editing frequencies is different from the task the model is trained on. For AJUBA,
the editing frequency gap between the cutoffs for the positives and negatives is small (0.003, in contrast to 0.45 and
0.302 for NEIL1 and TTYH2), so it is more challenging for the CNN model to distinguish samples with subtle editing
frequency differences.

4 Discussion

We presented a new approach for predicting human A-to-I editing from RNA sequence and structure. We trained our
models on a much larger dataset comprised of editing sites highly supported by GTEx RNA-seq, augmented by sampled
non-editing sites. Our CNN model not only achieved good performance on the held-out evaluation, but also generalized
to a more challenging task on the mutagenesis dataset. This shows that our model can learn general cis-regulatory
features of A-to-I editing, just from the observational dataset.

One major limitation of our models is that we focused only on binary ‘editing code’ with some ability to distinguish
the highly edited sites from the other end of the spectrum. A more complete ‘editing code’ in the future should be
able to predict the editing frequency, and constructing high quality training dataset for this task will require accurate
quantification of editing frequency from noisy RNA-seq. Additionally, our models do not take into account the
differences in tissue types, so modelling both cis- and trans-regulatory features could be an interesting future work.
Another direction is to focus on understanding the features the models learned which can help with our understanding
of the editing mechanism and regulation. With a more complete ‘editing code’, there are many interesting applications
that could be explored, such as identifying disease causing variants and RNA therapy using site-directed RNA editing.

3Due to the small number of samples, we use boostrapping with 1000 samples to estimate means and uncertainties of the reported
metrics.
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