
Evolution Is All You Need: Phylogenetic
Augmentation for Contrastive Learning

Anonymous Author(s)
Affiliation
Address
email

Abstract

Self-supervised representation learning of biological sequence embeddings alle-1

viates computational resource constraints on downstream tasks while circumvent-2

ing expensive experimental label acquisition. However, existing methods mostly3

borrow directly from large language models designed for NLP, rather than with4

bioinformatics philosophies in mind. Recently, contrastive mutual information5

maximization methods have achieved state-of-the-art representations for ImageNet.6

In this perspective piece, we discuss how viewing evolution as natural sequence7

augmentation and maximizing information across phylogenetic “noisy channels”8

is a biologically and theoretically desirable objective for pretraining encoders. We9

first provide a review of current contrastive learning literature, then provide an10

illustrative example where we show that contrastive learning using evolutionary11

augmentation can be used as a representation learning objective which maximizes12

the mutual information between biological sequences and their conserved function,13

and finally outline rationale for this approach.14

1 Introduction15

Self-supervised learning representation learning of biological sequences aims to capture meaningful16

properties for downstream analyses, while pretraining only on labels derived from the data itself.17

Embeddings alleviate computational constraints, and yield new biological insights from analyses in a18

rich latent space; to do so in a self-supervised manner further circumvents the expensive and time-19

consuming need to gather experimental labels. Though recent works have successfully demonstrated20

the ability to capture properties such as fluorescence, pairwise contact, phylogenetics, structure, and21

subcellular localization, these works mostly use methods designed for natural language processing22

(NLP) [56, 12, 46, 47, 3, 25, 18, 5, 21, 40, 19]. This leaves open the question of how best to design23

self-supervised methods which align with biological principles.24

Recently, contrastive methods for learning representations achieve state-of-the-art results on Im-25

ageNet [43, 26, 51, 24, 14]. Two “views” v1 and v2 of an input are defined (e.g. two image26

augmentation strategies), and the contrastive objective is to distinguish one pair of “correctly paired”27

views from N − 1 “incorrectly paired” dissimilar views. This incentivizes the encoder to learn28

meaningful properties of the input, while disregarding nuisance factors. Theoretically, it can be29

shown that such an objective maximizes the lower-bound on the mutual information, I(v1, v2) [44].30

In this piece, we first provide a review of current contrastive learning literature for obtaining repre-31

sentations in non-biological modalities. Then, we propose that molecular evolution is a good choice32

of augmentation to provide “views” for contrastive learning in computational biology, from both the33

theoretical and biological perspectives. Finally, we illustrate how evolutionary augmentation can be34

used to optimize a deep neural network encoder to preserve the information in biological sequences35

that pertains to their function.36
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2 Contrastive Learning for Mutual Information Maximization37

2.1 Contrastive Learning and Mutual Information Estimation38

The InfoMax optimization principle [36] aims to find a mapping g such that the Shannon mutual39

information between the input and output is maximized, i.e. maxg∈G I(X; g(X)). Recent years40

revive this principle as a representation learning objective to train deep encoders as g, and yield41

empirically desirable representations in the modalities of imaging [43, 27, 8, 51, 26, 37, 24, 14, 52, 55],42

text [48, 43, 32], and audio [37, 43].43

Most follow a variation of this optimization objective: given input x, and transformations t1 and44

t2, define v1 = t1(x) and v2 = t2(x) as two different “views” of x. These “transformations” can45

be parameterless augmentations [14], or another neural network summarizing global information46

[27, 43]. Further, define encoder(s) and latent representations z1 = g1(v1) and z2 = g2(v1). The47

encoder mappings may be constrained by G1 and G2 (e.g. architecturally). In some works, g1 and g248

may share some [27] or all [14] parameters. The goal is to find encoder mappings which maximize49

the mutual information between the outputs:50

max
g1∈G1,g2∈G2

I ′(g1(v1); g2(v2)) (1)

This objective is shown [53] to lower-bound the true InfoMax objective. Perhaps the most widely51

adapted estimator is the InfoNCE estimator [43] which provides an unnormalized lower bound on the52

mutual information by optimizing the objective [43]:53
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−
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where (v1, v
+
2 ) ∼ p(v1, v2) is a “real” pair of views drawn from their empirical joint distribution,54

and we draw negative samples v−2 ∼ p(v2) from the marginal distribution to form N − 1 “fake”55

pairs. N denotes the total number of pairs (and, in practice, often refers to the batch size). In Arora56

et al. [6], losses in this general form are termed “contrastive learning”. Note that this is essentially57

a cross-entropy to distinguish one positive pair from N − 1 negative pairs, where f is a “critic”58

classifier (reminiscent of adversarial learning), and should learn to return high values for the “real”59

pair. As is common in deep learning, the expectation is calculated over multiple batches.60

For a more detailed discussion of the connection between the InfoNCE loss, the InfoMax objective61

for representation learning, and other mutual information estimators, see Appendix A.62

2.2 Choice of “Views” in Contrastive Learning Literature63

Existing works select “views” of the input in different ways. These include using different time steps64

of an audio or video sequence [43, 49] or using different patches of the same image [43, 26, 27, 8].65

Recently, contrastive learning between local and sequentially-global embeddings is used to establish66

representations for proteins [38]. Augmentations are an oft-used strategy for constructing different67

views [28, 24, 14], sometimes applied in conjunction with image patching [26, 8].68

In this work, we argue that using evolution as a sequence augmentation strategy is a biologically69

and theoretically desirable choice to construct views. Previous work have explored evolutionary70

conservation as a means of sequence augmentation during training, such as augmenting a HMM using71

simulated evolution [34], or generating from a PSSM [7]. Other methods include using generative72

adversarial networks (GANs) for -omics data augmentation [17, 41] or injecting noise by replacing73

amino acids from an uniform distribution [31]. For genomic sequences, augmentations can be formed74

using reverse complements and extending (or cropping) genome flanks [13, 33].75

3 Evolution as Sequence Augmentation76

Here, we outline how phylogenetic augmentation fits into the contrastive learning framework, using77

SimCLR [14] as an example contrastive learning method. As outlined in Figure 1, homologous78
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sequences can be considered as “evolutionary augmented views” of a common ancestor, x. Sequences79

v1 and v2 are encoded by an encoder g(·) to obtain embeddings z1 and z2. The pair of embeddings80

augmented from the same ancestor – that is, embeddings of homologous sequences – will be the81

positive pair (v1, v+2 ) ∼ p(v1, v2). To sample negative samples {v−2j}
N−1
j=1 from p(v2), we can draw82

negatives from all non-homologous sequences.83

Figure 1: SimCLR [14] can be re-casted as a phylogenetic tree where augmentations are evolution. In
the original Chen et al. [14] paper, x is an input image, and two image augmentation methods, t1 and
t2, are sampled from a set of image augmentation methods T , to produce image augmentation v1 and
v2, which are then passed into a trainable encoder g(·) (i.e. g1 and g2 share parameters entirely). In
conceptualizing evolution as an augmentation strategy, x can be viewed as a common ancestor, while
T are possible evolutionary trajectories, characterized by different evolutionary distance, mutation
and genetic drift, and t1, t2 are two example trajectories that lead to v1 and v2, sampled from a set of
homologs. Note that notations are adapted from the original SimCLR paper for consistency with the
current work.

The key idea is that properties of the ancestral sequence that were important for its biological function84

will be preserved in both descendants (i.e. views). By training the encoder to project these to nearby85

locations in the latent space, we ensure that proximity in the latent space corresponds to similar86

biological functions without explicit labels during pretraining, analogous to how SimCLR learns87

semantic content without image labels. We see that contrastive learning frameworks such as SimCLR88

can be directly adapted to capture phylogenetic principles.89

4 Why Evolution as Biological Sequence Augmentation?90

4.1 Invariant Representations Across Evolutionary “Noisy-Channels” Mirrors91

Comparative Genomics92

Biological sequences are vehicles for information transmission. As such, information theoretic93

principles are directly applicable to biological sequence analyses, and therefore, this may be more a94

more powerful approach than methods based on the analogy with natural language [3, 47, 45, 19].95

The analogy between molecular evolution and noisy-channel coding is well-rooted in prior work96

[20, 39, 54, 35]: DNA dictates information transmission across generations, which must be transferred97

through a noisy “mutation and drift channel”. Further, as noted in Kimura [30], as the genotype-to-98

phenotype manifestation is information transfer, and genomic information is passed down by heredity,99

we may view functional phenotypes as “decoded” information that was transmitted from a common100

ancestor via molecular evolution. Drawing from these writings, we argue that using maximizing101

mutual information across homologs is a good proxy for structure and function [1], which are the102

central aims for biological sequence embeddings [45].103

Even without relying on the mutual information estimation interpretation of the InfoNCE loss, the104

contrastive learning objective directly encourage representational invariance to shared features across105

views [14]. Therefore, in using phylogenetic relationships to create views, learned representations106

directly capture the philosophy of evolutionary conservation in comparative genomics: functional107
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elements will be preserved in comparisons of related sequences, while non-functional sequences108

will decay. Hence, functional elements in biological sequences can be identified through sequence109

comparisons [23]. This is perhaps the most successfully employed presumption in bioinformatics110

[16, 4].111

We therefore argue that InfoMax-based deep learning on evolutionary augmentation has two attractive112

features from the biological perspective: (1) Molecular evolution and the genotype-to-phenotype113

relationship has a clear analogy to information transmission; and (2) contrastive learning in this114

setting encourages agreement between important features across evolutionary views (homologous115

sequences), which directly mirrors comparative genomics.116

4.2 Evolutionary Augmentation is a Theoretically Desirable View117

Tian et al. [51] proposes the “InfoMin” principle for selecting optimal views. The authors theoretically118

and empirically demonstrate that good views should have minimize their shared MI while keeping119

task-relevant information intact for downstream uses. More formally, for a downstream classification120

task C to predict label y ∈ Y from x, the optimal representation z∗ = g1(x) is the is the minimal121

sufficient statistic for task C, such the representation is as useful as access to x while disregarding all122

nuisance in x [52, 50]. Then, the optimal views of task C is (v∗1 , v
∗
2) = minv1;v2 I(v1; v2), subject to123

I(v1; y) = I(v2; y) = I(x; y). Given (v∗1 , v
∗
2), the learned representations (z∗1 , z

∗
2) are optimal for124

task C.1125

There are two implications in adapting the InfoMin principle to biology which render evolutionary126

augmentations desirable. Firstly, sampling evolutionary trajectories t1, t2 ∼ T to create v1 = t1(x)127

and v2 = t2(x) provide a simple way to reduce I(v1, v2) by selecting paired views (v1, v+2 ) with a128

greater phylogenetic distance between them. Secondly, note that in order to choose views based on129

the InfoMin principle, access to labels y ∈ Y and knowledge of task C is needed. In fact, supervised130

contrastive learning [29] empirically yields improved results by explicitly sampling negatives from a131

different downstream class. If given labels for a downstream biological task of interest (e.g. remote132

homology), one can explicitly negative sample from dissimilar classes (e.g. different folds); however,133

owing to the difficult label-acquisition process and open-ended nature of biological questions, access134

to Y – or even task C – may not be always possible. Further, it is often desirable for biological135

sequence embeddings to be “universal representations” [3] and applicable for a variety of downstream136

tasks [45]. As noted in Section 4.2, evolutionary conservation is a good proxy for many tasks of137

interest (e.g. structure and function).138

Thus, we see that in transferring theoretical results for optimal view selection to the biological setting,139

evolution as augmentation is desirable, as: (1) It is easy to control shared mutual information between140

views; and (2) evolutionary conservation is a good semantic proxy for downstream labels, and141

implicitly performs supervised contrastive learning while still circumventing expensive experimental142

label gathering. Hence, it may be best considered a general strategy for weakly-supervised contrastive143

learning.144

5 Conclusion145

Current methods for self-supervised representation learning in biology are mostly adapted from146

NLP methods. Contrastive learning achieves state-of-the-art results in the image modality, and147

has a desirable theoretical property of being a lower-bound estimator of mutual information. We148

demonstrate how evolution can be used as a sequence augmentation strategy for contrastive learning,149

and provide justifications for doing so from biological and theoretical perspectives. More generally,150

data augmentation is a critical preprocessing step in many image analysis applications of deep151

learning, but is it less clear how to augment data for biological sequence analysis. As research in152

applications of deep learning in biology expand, we hope the view of evolution as augmentation will153

guide the ideation of deep learning methods in computational biology.154

1The optimal property of representations (z∗1 , z∗2) assumes access to an encoder which serve as a minimal
sufficient statistic of the input [50]. More formally, a “sufficient encoder” gsufficient require that gsufficient(v1) has
kept all information about v2 in v1, and a “minimal sufficient encoder” g1 ∈ Gsufficient discards all irrelevant
“nuisance” information such that I(g1(v1); v1) ≤ I(gsufficient(v1); v1),∀gsufficient ∈ Gsufficient.
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A InfoMax Principle and Mutual Information Estimation for293

Representation Learning294

A.1 InfoMax for Representation Learning295

Using InfoMax for representation learning extends as far back as ICA [11]. As described in Equation296

1, in recent years, works typically maximize mutual information of two encoded “views” of an input297

(e.g. different patches of an image, or augmentations). By the data processing inequality, Tschannen298

et al. [53] show that:299

I(g1(v1); g2(v2)) ≤ I(x; g1(v1), g2(v2)), (3)

such that maximizing Equation 1 is equivalent to maximizing a lower bound on the true InfoMax300

objective. This ability to minimize the mutual information in the latent embedding space rather than301

directly between the input and the encoded output (as per the original InfoMax formulation) has two302

advantages [53]: (1) MI is notoriously difficult to estimate in high dimensions, and this allows for MI303

estimation in a lower-dimensional space; (2) creative choices of G can be used, which accommodates304

specific modeling needs and data intricacies.305

A.2 InfoNCE Estimator306

InfoNCE is one of many mutual information estimators, and following the rationale in Section A.1,307

the original Oord et al. [43] paper does this estimation in the embedding space. For the InfoNCE308

loss (Equation 2) which estimates I(z1; z2) = I(g1(v1); g2(v2)) in Equation 3, the optimal critic309

function is f∗(z1, z2) =
p(z2|z1)
p(z1)

[43]. Inserting this in the InfoNCE loss function (Equation 1) and310

rearranging, we have the bound [43, 44]:311

I(z1, z2) ≥ log(N)− L∗NCE (4)

where N is the number of samples. From Equation 4, note that the bound is tight when: (1) We use312

more samples for N which increases the log(N) term; and (2) we have a better f which results in a313

lower LNCE. Empirically, most works corroborate the former theoretical observation regarding N314

(exceptions being Arora et al. [6], Lu et al. [38]), while the latter observation regarding f does not315

usually hold, as will be further discussed in Section A.3.316

The contrastive nature of the InfoNCE loss stems from its direct adaptation of the noise-contrastive317

estimation (NCE) method [22]. Noise-contrastive estimation was originally proposed for the problem318

of estimating parameters for unnormalized statistical models in high dimensions, by reducing the319

problem to simply estimating logistic regression parameters to distinguish between observed data and320

noise. In InfoNCE, the distinction is made between “similarity scores”, as scored by critic f(z1, z2),321

for one positive pair and N − 1 negative pairs of encoded views.322

A.3 Other Mutual Information Estimators323

The InfoNCE estimator is one of many approaches which builds on advancements in variational324

methods to create differentiable and tractable sample-based mutual information estimators in high325

dimensions [15, 9, 42, 2, 10, 43, 27]. Many of these estimations involve a “critic” classifier, f .326

In practice, f might be a bilinear model zT1 Wz2 [43, 26, 51], separate models φ(z1)Tφ(z2) [8],327

modelling concatenated data φ([z1, z2]) [27], or a simple dot-product zT1 z2 [14, 38]. There may be a328

different f for each view [43], or a global f [27]. f is often trained jointly with g1 and g2.329

The aim of f is often to approximate the unknown densities p(B) and p(B|A), or density ratios330
p(A|B)
p(B) = p(B|A)

p(A) [44]. If I(A,B) is high, then f should intuitively be able to easily assign high331

probabilities to those samples drawn from p(A,B) [53]. The InfoNCE estimator reduces variance as332

compared to other estimators, by depending on multiple samples, but trades off bias to do so [44].333

Importantly, it should be noted that whether the empirical success of the InfoNCE loss should be334

attributable to mutual information estimation has been questioned [44, 53], instead attributing success335

to geometric properties in the latent space [55]. For example, a higher-capacity f should increase336
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tightness of the bound, as noted in Section A.2, yet hinders performance [53]. The development337

of MI-estimators useful for neural network training – and demystifying their empirical success –338

remains an active area of research. For the purposes of ideas in this work, we note that SimCLR-like339

contrastive losses itself intuitively maximizes agreement between views in the representation space340

without relying on the mutual information framing of the loss [14], and hence the connection to341

comparative genomics still hold.342
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