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Abstract
Pretrained embedding representations of biolog-
ical sequences which capture meaningful prop-
erties can alleviate many problems associated
with supervised learning in biology. We apply
the principle of mutual information maximization
between local and global information as a self-
supervised pretraining signal for protein embed-
dings. To do so, we divide protein sequences into
fixed size fragments, and train an autoregressive
model to distinguish between subsequent frag-
ments from the same protein and fragments from
random proteins. Our model, CPCProt, achieves
comparable performance to state-of-the-art self-
supervised models for protein sequence embed-
dings on various downstream tasks, but reduces
the number of parameters down to 0.9% to 8.9%
of benchmarked models. Further, we explore how
downstream assessment protocols affect embed-
ding evaluation, and the effect of contrastive learn-
ing hyperparameters on empirical performance.
We hope that these results will inform the devel-
opment of contrastive learning methods in protein
biology and other modalities.

1. Introduction
The cost and time associated with obtaining labels for su-
pervised problems on proteins is a challenge, rendering self-
supervised methods for obtaining labels an appealing solu-
tion.Though recent works have successfully demonstrated
the ability to capture properties such as fluorescence, pair-
wise contact, phylogenetics, structure, and subcellular local-
ization, these works mostly use methods designed for natural
language processing (NLP) [41, 31, 32, 3, 16, 11, 4, 24, 12].
Presumably, using a more biologically-motivated proxy task
will yield better insights and performance on biological data.
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Figure 1. Downstream performance on protein-related tasks ob-
tained by finetuning embeddings from pretrained models, plotted
against the number of parameters in the pretrained model. Orange
stars denote our model, and blue crosses denote methods bench-
marked in Rao et al. [29]. ρ denotes Spearman’s correlation for
regression tasks.

Biological sequences are inherently vehicles for information
transmission. DNA transmits information across genera-
tions, which is then decoded into proteins by the central
dogma. Across the “noisy channels” of heredity, DNA
replication, transcription, and peptide signalling, genetic
diversity offers useful redundancy which “error-corrects”
against mutations which corrupt the functional and struc-
tural information conveyed. This analogy between Shan-
non information theory and biological proceses have been
well-studied since the the 1970s [14, 20, 23, 2, 39], and suc-
cessfully empirically applied in problems such as sequence
logo visualization [35], transcription factor binding site dis-
covery [36], structure prediction of protein loops [22], and
evolutionary conservation of sequence features. [28, 27].
Viewing representation learning of proteins from the infor-
mation theoretic lens is therefore arguably better rooted in
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biochemical realities than NLP-derived methods [3, 32, 29].

In this work, we present CPCProt, which maximize mutual
information between context and local embeddings by mini-
mizing a contrastive loss. On protein-related downstream
benchmarks [29], CPCProt achieves comparable results, de-
spite using 0.9% the number of pretraining parameters of
the largest model [3] and 8.9% of the number of parameters
of the smallest neural network model [6], as illustrated in
Figure 1.

2. Methods
We describe CPCProt, which applies the In-
foNCE loss introduced by the Contrastive Pre-
dictive Coding (CPC) method [26] to protein se-
quences. Pretrained model weights are available at
hershey.csb.utoronto.ca/CPCprot/weights/,
and code for our method is available at
http://github.com/amyxlu/CPCProt.

2.1. Contrastive Predictive Coding and InfoNCE

The CPC method [26] introduces a lower-bound estimator
for unnormalized mutual information. Define an encoder
and autoregressor as genc and gar. Further, define x as
an input protein sequence, z as the latent embedding pro-
duced by genc(x), and c as the long-range protein sequence
“context”, as summarized by the autoregressor gar(z). At
a given position t (indexed for z), we estimate mutual in-
formation using the InfoNCE estimator I ′NCE(zt+k; ct) for
k ∈ {1, 2, . . . ,K} by minimizing the loss:

Lt+k = −E
[
log

exp(f(zt+k, ct))

exp(f(zt+k, ct)) +
∑N−1

j=1 exp(f(z′j , ct))

]
In other words, in each batch ofN samples, we have a single
sample zt+k drawn jointly with ct from p(zt+k, ct). Then,
following the NCE method, we draw N − 1 “fake” samples
from the noise distribution p(z′) to create a set of {z′j}

N−1
j=1 .

In practice, the expectation is taken over multiple batches.

This objective is a contrastive task, using a cross-entropy
loss which encourages a critic, f , to correctly identify the
single “real” sample of zt+k. Minimizing this loss pro-
vides an unnormalized lower-bound estimate on the true MI,
I ′NCE(zt:(t+K); ct) [26].

2.2. CPCProt: Applying InfoNCE to Protein Datasets

Each input x is divided into fixed-length patches, and each
patch is encoded to output a single embedding for the patch,
which are concatenated into the latent embedding z; that
is, the length of z becomes Lz = b sequence length

patch length c. Here, a
patch length of 11 is selected, such that it is long enough to

capture local structural information and gives a reasonable
Lz for the Pfam sequences we pretrain on. We start with
some tmin to allow ct to gain some context when calculating
the loss, then calculate I ′NCE

t+k for every t ∈ {tmin, tmin +
1, ..., Lz−K} and k ∈ {1, 2, ...,K}. A schematic detailing
the method is illustrated in Figure 2.

The final loss minimized in each batch is the average of
calculated Lt+k for all values of t and k:

L = 1
Lz−K−tmin

1

K

Lz−K∑
t=tmin

K∑
k=1

Lt+k (1)

Figure 2. Input protein sequences are divided into “patches” of 11
amino acids. Each patch is encoded into a single vector though
genc, and all encodings are concatenated to form z. gar is an
autoregressor that aggregates local information, and produce c, a
context vector which summarizes the global context. Amino acid
sequences are zero-padded to the longest sequence in the batch,
with remaining amino acids not long enough for a patch discarded.
For a given batch, the loss is the average of the InfoNCE estimate
I ′t+k for all t ∈ {tmin, tmin+1, ..., Lz−K} and k ∈ {1, 2, ...,K}.
In this example batch, tmin = 1, Lz = 6, and K = 4.

Architecture The CPCProt encoder consists of embed-
ding layer to 32 hidden dimensions, followed by 64 filters
of length 4, 64 filters of length 6, and 512 filters of length
3. Filter lengths are designed such that the output of an 11
amino acid patch has an output length of one. A single-layer
GRU is used as the autoregressor. All autoregressors use
the same number of hidden dimensions as encoder output.

Additional Pretraining Details Models are pretrained on
protein domain sequences from the Pfam database [10] us-
ing the same data splits as used for downstream benchmarks
[29]. We use tmin = 1 and choose K = 4 (that is, 44 amino
acids away). Sequences are zero-padded up to the longest
sequence in that batch, and truncated to a maximum of 550
amino acids. We use a parameterless dot product critic
for f and draw “fake” samples from p(z) and p(c) using

http://hershey.csb.utoronto.ca/CPCprot/weights/
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other zt+k and ct from other samples in the same batch [7].
A batch size of 64 is used, trained for 19 epochs with a
constant learning rate of 1e-4 using the Adam optimizer.

In addition, we report results using a large encoder and
a LSTM autoregressor, with architectural and pretraining
details in Appendix A.

3. Data and Downstream Evaluation
Evaluating Embeddings for Hyperparameter Selection
To avoid overfitting to benchmarks [30], we examine three
evaluations for pretraining hyperparameter selection: (1)
Validation set performance on benchmarked downstream
tasks; (2) contrastive accuracy during pretraining; and (3)
Pfam family prediction using a 1-nearest-neighbor (1NN)
classifier on the pretraining validation data. See Appendix
B for further details.

Models for Downstream Evaluation For consistency
with benchmarks, we use the same default downstream
architectures as provided by the authors [29]. Following
previous work in self-supervised learning, we also assess
linear separability of embeddings using a linear model
[26, 17, 15, 5, 37, 38]. Note that as compared to the neural
network finetuning head evaluation, we use static embed-
dings extracted from the model without end-to-end optimiza-
tion. In addition, we evaluate separation in the latent space
using a kNN model with a grid search over the number of
neighbours k ∈ {1, 5, 10}.

Downstream Evaluation Tasks and Data We assess our
models on four TAPE downstream benchmark tasks [29]:
remote homology, secondary structure, fluorescence, and
stability. See Appendix C for details.

4. Results
CPCProt Performs Comparably with Baselines Using
Fewer Parameters CPCProt achieves comparable results
as baselines on most tasks; however, we use only 0.9% of
the number of embedding parameters of the largest model
[3] and 8.9% of the number of embedding parameters of the
smallest neural network [6] (Tables 1-5; Figure 1).

For the fluorescence task, CPCProt achieves higher ρ and
lower MSE than other models for both a neural network
finetuning head and most linear regression and kNN evalua-
tions (Tables 1, 5). For the secondary structure and stability
tasks, CPCProt achieves comparable performance with other
neural network models, with a fraction of the number of
parameters (Tables 1, 3, 4).

Downstream Assessment is Inconsistent Using Different
Models For the purpose of using downstream tasks pri-

marily as a means to evaluate the quality of embeddings,
changing the downstream model used sometime result in
preferring different models (Tables 1, 2, 3, 4, 5), as does
using a different performance metric (i.e. MSE versus Spear-
man’s ρ for regression tasks) (Tables 4, 5). For example,
though CPCProt appear to generalize poorly to the Fold
test set for the remote homology task relative to baselines
using a neural network classifier head (Table 1), it in fact
outperforms both BERT and UniRep when using a kNN
classifier (Table 2). For fluorescence and stability, switching
to a simple linear or kNN model better differentiate perfor-
mances of UniRep, BERT, and CPCProt variants (Tables
4, 5). Performance improves when using a finetuned neu-
ral network head for most embeddings, but for secondary
structure, finetuning with a higher capacity MLP actually
decreases Q3 accuracy.

5. Discussion
Relationship Between Pretrained Model Size and Down-
stream Performance Table 1 and Figure 1 show that
there is no clear connection between increasing the number
of parameters (in the pretrained model only) and down-
stream performance, contrary to the philosophy behind 567
million parameter NLP-inspired models for protein repre-
sentations [12]. This is true even for variants of CPCProt,
which were trained using the same self-supervised objective.

The finding that CPCProt achieves comparable results
with less parameters may be a reflection of the over-
parameterization of existing protein embedding models in
the field, or of a unique benefit conferred by the contrastive
training. In any case, these results show that simply port-
ing large models from NLP to proteins is not an efficient
use of computational resources, and we encourage the com-
munity to further explore this relationship. As compared
to currently-available protein embedding models, we note
the suitability of CPCProt for downstream use-cases where
model size is a key concern.

Difficulties in Quantitatively Assessing Protein Embed-
dings As explored in Section 4, it is difficult to quan-
titatively assess embedding performance, as downstream
performance differs by downstream model and performance
metrics (i.e. MSE vs ρ). Moreover, it is difficult to attribute
quantitative performance on downstream tasks to the infor-
mation captured by the embedding, or to the supervised
finetuning procedures. This is complicated by the inconsis-
tency in whether if encoder weights should be frozen during
training: while some works in contrastive learning freeze
the encoder during finetuning [40], large NLP embedding
models such as BERT typically update parameters end-to-
end [9], as do protein models inspired by these NLP models
[29].
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# of
Embedding
Parameters

Remote
Homology

Secondary
Structure Stability Fluorescence

Fold Superfamily Family CB513 CASP12 TS115
Unirep 182M 0.23 0.38 0.87 0.73 0.72 0.77 0.73 0.67
BERT 92M 0.21 0.34 0.88 0.73 0.71 0.77 0.73 0.68
ResNet 48M 0.17 0.31 0.77 0.75 0.72 0.78 0.73 0.21
LSTM 44M 0.26 0.43 0.92 0.75 0.70 0.78 0.69 0.67

Bepler et al. 19M 0.17 0.20 0.79 0.73 0.70 0.76 0.64 0.33
One Hot 0 0.09 0.08 0.39 0.69 0.68 0.72 0.19 0.14
CPCProt 1.7M 0.12 0.12 0.48 0.69 0.70 0.73 0.65 0.68

CPCProtGRU large 8.4M 0.13 0.14 0.52 0.70 0.70 0.73 0.65 0.68
CPCProtLSTM 71M 0.11 0.11 0.47 0.68 0.66 0.70 0.68 0.68

Table 1. Embedding performance by downstream task using the default neural network finetuning head, compared against Tasks Assessing
Protein Embeddings (TAPE) benchmarks [29].

Remote Homology
Fold Superfamily Family

LR kNN LR kNN LR kNN
UniRep 0.08 0.06 0.18 0.11 0.48 0.38
BERT 0.20 0.11 0.30 0.24 0.76 0.74

CPCProt 0.14 0.12 0.13 0.10 0.50 0.51
CPCProtGRU large 0.13 0.12 0.14 0.10 0.50 0.55

CPCProtLSTM 0.14 0.11 0.15 0.12 0.52 0.55

Table 2. Downstream evaluation using logistic regression and kNN
k-nearest-neighbours models (Top-1 accuracy).

Secondary Structure
CB513 CASP12 TS115

LR LR LR
UniRep 0.66 0.80 0.70
BERT 0.72 0.82 0.77

CPCProt 0.61 0.80 0.68
CPCProtGRU large 0.62 0.80 0.69

CPCProtLSTM 0.62 0.80 0.69

Table 3. Downstream evaluation using logistic regression models.
Top-3 (Q3) accuracy is reported.

Stability
LR kNN

MSE ρ MSE ρ
UniRep 0.21 0.62 0.24 0.57
BERT 0.36 0.39 0.23 0.49

CPCProt 0.34 0.55 0.18 0.51
CPCProtGRU large 0.31 0.62 0.18 0.52

CPCProtLSTM 0.22 0.62 0.19 0.54

Table 4. Downstream evaluation using linear regression and kNN
models for stability (MSE and Spearman’s ρ).

Fluorescence
LR kNN

MSE ρ MSE ρ
UniRep 1.32 0.55 1.66 0.37
BERT 1.15 0.52 1.75 0.46

CPCProt 1.13 0.54 1.82 0.49
CPCProtGRU large 0.81 0.63 1.84 0.50

CPCProtLSTM 0.85 0.67 1.80 0.51

Table 5. Downstream evaluation using linear regression and kNN
models for fluorescence (MSE and Spearman’s ρ).

We hope to highlight that downstream benchmarks should
not definitively define utility of an embedding. Under con-
sistent protocols, they may be good proxies to examine
specific desiderata regarding global and local information
or out-of-distribution generalization. Given the diversity
of biological use cases, embedding evaluations should be
made on a case-by-case basis.

6. Conclusion
In this work, we introduce CPCProt, which achieves compa-
rable downstream performance as existing protein embed-
ding models, at a fraction of the number of parameters. We
further compare the effects of using different pretraining
evaluation metrics and downstream models for evaluating
embeddings on protein-related tasks, and find that there is
poor consistency in how models compare against one an-
other, illustrating the difficulty in defining the utility of an
embedding for biological use cases. We hope that this work
can inform the development of other embedding models for
biological sequences.
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A. Architectural Variants
In addition to the main CPCProt model we present in Figure 1, we also report results using a larger encoder. Both
CPCProtGRU large and CPCProtLSTM uses an embedding layer to 64 hidden dimensions, followed by 128 filters of length 4,
256 filters of length 4, and 512 filters of length 3; in the final layer, CPCProtGRU large uses 1024 filters of length 3, whereas
CPCProtLSTM uses 2048 filters. For CPCProtLSTM, a two-layer LSTM is used instead of a GRU. To avoid information
leakage about later sequence locations in the context vector, we only use uni-directional autoregressors.

B. Evaluation for Pretraining Hyperparameter Selection
Though in principle, the contrastive accuracy on heldout pretraining data is sufficient for hyperparameter selection, we were
concerned that the contrastive task is relatively local, and may fail to assess how well embeddings have captured the global
context. We also wanted to avoid overfitting to downstream benchmarks. For the contrastive task (i.e. the self-supervised
pretraining task), we keep the ratio of negative-to-positive samples consistent across models, and use a batch size of 512 for
all models for this validation.

The 1NN classification task is a direct measure of the ability for embeddings to cleanly separate Pfam domains in the latent
space, and requires no parameter tuning or additional labels for evaluation. For this task, the dataset consists of sequences
from the 50 Pfam families with the most sequences in the pretraining validation dataset, subsampled to 120 sequences per
family for class balance. 70% of this embeddings is used to populate the 1NN classifier, and 30% of the sequences are used
at the classification phase. A t-SNE of CPCProt embeddings colored by the 50 families is shown in Figure 3.

Figure 3. CPCProt embedding t-SNE of the 50 largest Pfam families in the validation dataset, using the final position of the context vector.
Note that while colours denote different families, proximity in the continuous color space do not correspond to any intrinsic similarities
between families.

Our main CPCProt model (1.7M parameters), from which all analyses are derived, was selected as it had the best
overall performance on the downstream validation set. We also report the model with the best contrastive task accuracy
(CPCProtLSTM) and with the best 1NN task accuracy (CPCProtGRU large).

C. Data Description for Downstream Tasks
Remote Homology Remote sequence homologs share conserved structural folds but have low sequence similarity. The
task is a multi-class classification problem, consisting of 1195 classes, each corresponding to a structural fold. Since global
context from across the Pfam domain is important, we use the final position of the autoregressor output, c.

Data from the SCOP 1.75 database [13] is used. Each fold can be sub-categorized into superfamilies, and each superfamily
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Pretraining Validation Dataset Downstream Tasks Validation Dataset
Contrastive
Accuracy 1NN Fluorescence Stability Remote

Homology
Secondary
Structure

CPCProt 0.04 0.89 0.80 0.68 0.11 0.71
CPCProtLSTM 0.09 0.91 0.79 0.68 0.12 0.66

CPCProtGRU large 0.05 0.93 0.72 0.67 0.10 0.69

Table 6. Results on evaluation metrics for selecting hyperparameters and architectures. The contrastive accuracy is the NCE task, using a
batch size of 1024, such that a random model achieves an expected accuracy of 0.00098. Our CPCProtLSTM variant achieves the highest
contrastive accuracy of all evaluated models, while the CPCProtGRU large variant achieves the highest accuracy on the 1NN Pfam family
prediction task. We report models selected by metrics which do not depend on downstream tasks to avoid benchmark overfitting, and to
examine the effect of increasing the number of parameters on desired properties of embeddings. For reference, UniRep achieves 95%
accuracy on our 1NN Pfam family prediction task and dataset.

sub-categorized into families. The training, validation, and test set splits are curated in Hou et al. [18]; test sets examines
three levels of distribution shift from the training dataset. In the “Family” test set, proteins in the same fold, superfamily,
and family exists in both the training and testing datasets (i.e. no distribution shift). The “Superfamily” test set holds out
certain families within superfamilies, but sequences with overlap with training dataset at the superfamily level. Finally, the
“Fold” test set also holds out certain superfamilies within folds. Note that severe class imbalance exists for this task, as 433
folds in the training dataset only contains one sample.

For evaluation using a neural network head, the classification architecture is a multi-layer perceptron (MLP) with one hidden
layer of 512 units. with ReLU activation and weight normalization. Note that results in benchmarked models also train a
simple dense layer to obtain an attention vector before calculating an attention-weighted mean.

Secondary Structure Secondary structure is a sequence-to-sequence task evaluating the embeddings’ ability to capture
local information [29]. We report three-class accuracy (Q3), following the DSSP labeling system [19]. Each input amino
acid is mapped to one of three labels (“helix”, “strand”, or “other”), and accuracy is the percentage of correctly-labelled
positions. To obtain the embedding, we use a sliding input window to obtain z with the same length as the input sequence,
and then use c as the embedding to incorporate global context.

Classification results are presented on three datasets: (1) TS115, consisting of 115 protein sequences [42]; (2) CB513,
consisting of 513 protein regions from 434 proteins [8]; and (3) free-modelling targets from the 2016 CASP12 competition,
consisting of 21 protein sequences [1, 25]. For training these supervised classifiers, the same validation and filtered training
datasets as NetSurf-2.0 is used, where sequences with greater than 25% sequence similarity as the three test set sequences
were removed from the training set 500 sequences randomly heldout for validation, leaving 10,337 sequences for training
[21].

For evaluation using a neural network head, the classification architecture in tape-proteins is a convolutional archi-
tecture with 512 filters of size 5 and 3 in layers one and two, respectively. The original benchmarks use a higher capacity
NetSurfP model [21], with two convolutional layers followed by two bidirectional LSTM layers and a linear output layer.

Fluorescence The fluorescence task is a protein engineering task which evaluates how fine-trained local genotypic changes
can be captured to predict phenotypic expression, as measured by native fluorescence. The regression task is to predict
the log-intensity of a mutant GFP sequence. Since this task is more sensitive to local than global information, we apply a
mean-pool along the sequence dimension of the encoder output, z.

The data is from a Deep Mutational Scan (DMS) experiment from Sarkisyan et al. [34], which measures fluorescence
from derivative genotypes of the green fluorescent protein avGFP. Data splits are curated in Rao et al. [29]. Training and
validation data are in a Hamming distance 3 neighborhood from the original protein, while the test data exhibits larger
distribution shift and is from the Hamming distance 4-15 neighborhood.

For evaluation using a neural network head, tape-proteins uses the same MLP architecture as described in the
remote homology task. The original benchmarks in Rao et al. [29] compute an trainable attention-weighted mean prior to
classification.
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Stability Stability is a protein engineering task which measures the most extreme concentration for which a protein can
maintain its structure. This is a regression task to predict a stability score of proteins generated by de novo design. Since this
task is also sensitive to fine-grained local effects, we use the mean along the encoder output z as a pooled embedding.

The data is from Rocklin et al. [33], which measures the stability of proteins generated by parallel DNA synthesis, consisting
of sequences from four protein topologies: ααα, βαββ, αββα, ββαββ. The stability score is the difference between the
measured EC50 of the actual protein and its predicted EC50 in its unfolded state. Here, EC50 is the protease concentration at
which 50% of cells pass the characterization threshold; note that it is measured on a log10 scale. Data splits are curated
in Rao et al. [29], such that the test set consists of seventeen 1-Hamming distance neighbourhoods from the training and
validation datasets. A visualization of this test split is shown in Figure 4.

For evaluation using a neural network head, as with remote homology and fluorescence, we use the provided MLP
architecture, while the original benchmarks compute an trainable attention-weighted mean prior to classification.

Figure 4. t-SNE visualization of proteins which are all 1-Hamming distance away from one of seventeen candidate proteins. Colors denote
stability measurement on a log10 scale. The data corresponds to test set curated in the TAPE benchmarks [29] for the stability dataset
from Rocklin et al. [33].


