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Abstract

Enhancers are distal elements that interact with each other and with promoters
through DNA looping in order to regulate gene expression. Linking enhancers to
their target genes – or more precisely, determining which genomic elements have
a functional impact on the expression of each gene – is a critical and unsolved
problem in regulatory genomics. Since enhancers can regulate target genes at a
linear distance of 1Mb or more while “skipping over” nearby genes, it is unlikely
that this problem can be solved using only 1D epigenomic data alone. Instead,
incorporating data on 3D genomic architecture from Hi-C or HiChIP experiments
may provide the way forward. Here we propose a model called Gene Regulation
Model with 3D interactions (GRM-3D) that integrates both 1D epigenomic data,
including chromatin accessibility and histone modifications, and 3D interaction
data in order to predict the gene expression (promoter activity) at each genomic
position. GRM-3D first uses convolutional neural networks (CNN) to find local
representations of 1D epigenomic data and then integrates these extracted features
across distal genomic regions using graphs extracted from H3K27ac HiChIP via
graph attention networks to predict gene expression as measured by CAGE-seq.
GRM-3D achieves better gene expression prediction compared to CNN models that
do not exploit 3D data. Furthermore, feature attribution applied to GRM-3D more
accurately identifies functional enhancers, as validated by CRISPRi-FlowFISH,
than the recently published Activity-by-Contact model.

1 Introduction

Transcriptional gene regulation involves the collaboration of transcription factors binding both at the
promoter and enhancer regions and the physical interaction of these bound complexes in 3D via DNA
looping. Thanks to technological advances we now have access to genome-wide 3D interaction data,
such as Hi-C [6] and HiChIP [8], in addition to traditional 1D epigenomic data, such as chromatin
accessibility (DNase-seq and ATAC-seq [1]) and histone modifications (ChIP-seq and CUT&RUN
[12]). So far, machine learning (ML) "regulatory models" for genome-wide prediction of expression
have largely relied on 1D epigenomic data or DNA sequence [4, 11]. However, these methods
only consider local features, such as promoters and at most nearby enhancers, and do not have
the capability of capturing the impact of distal regulatory elements, which can be 1Mb or farther
away from the promoters of the genes. Based on this insight, we believe that an effective and more
reasonable ML model should take into account the 3D structure of the genome.

In this paper, we propose Gene Regulation Model with 3D interactions (GRM-3D), a model that
integrates both 1D epigenomic and 3D interaction data to predict gene expression. The 1D data can
include any standard epigenomic assays such as histone modification ChIP-seq, transcription factor
ChIP-seq, or chromatin accessibility from DNase-seq or ATAC-seq. The 3D genome architecture
data can be derived from Hi-C or HiChIP experiments. GRM-3D has two blocks: (1) the first block
receives 1D data as an input and learns local representations using convolutional neural networks
(CNN); (2) the second block receives a graph extracted from 3D data and the local representations
from the first block and uses graph attention networks (GAT) to predict gene expression (CAGE-seq)
across genomic positions (bins). We use CAGE-seq [9] since it is a tag-based protocol for measuring
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gene expression and mapping the transcription start site (TSS), and therefore the read coverage
at a TSS does not depend on the transcript length. Our motivation for proposing the GRM-3D
model is two-fold. First we aim to improve gene expression prediction by leveraging 3D genomic
architecture to incorporate distal enhancer elements. Second, we want to intepret the model to assess
the importance of distal enhancers for regulation of specific target genes. To this end, we use feature
attribution (FA) methods and show that FA of the proposed GRM-3D model can better rank the
CRISPRi-FlowFISH validated enhancers of genes compared to baseline CNN models and recent
enhancer-finding methods such as the Activity-by-Contact (ABC) model [3].

We define two variants of GRM-3D model: a cell-type-agnostic (CTA) and a cell-type-specific (CTS)
model, depending on the type of 1D inputs. In this paper we have used a minimal set of 1D data
relevant to gene regulation: DNase-seq as a measure for chromatin accessibility, H3K4me3 ChIP-seq
for promoter activity, and H3K27ac ChIP-seq for enhancer activity. For 3D data, we found that
H3K27ac HiChIP data provided an advantage over Hi-C since it contains more regulatory interactions,
such as enhancer-enhancer (E-E) and enhancer-promoter (E-P) loops, rather than general structural
(CTCF- or cohesin-mediated) interactions seen in Hi-C data. For GRM-3D/CTA, we used the three
aforementioned 1D epigenomic signals – all from a given cell type – as input. We call the model
cell-type-agnostic because the inputs are cell-type-specific, and thus the trained models can be applied
to other cell types given the corresponding inputs. For GRM-3D/CTS, we use DNA sequence as
input and take a multi-task learning approach, predicting DNase, H3K4me3, and H3K27ac in the
CNN block and predicting CAGE-seq after the GAT block. We call this model cell-type-specific
because it learns the transcription factor (TF) binding motifs specific to the trained cell type and
consequently does not have the ability to generalize to another cell type. The aim of GRM-3D/CTS
is to study the TF binding motifs in enhancer and promoter regions of the genes in a given cell type
and to be able to predict the impact of nucleotide-level interventions in DNA sequence on target gene
expression. We have shown in experiments that GRM-3D models in both CTA and CTS settings
demonstrate superior performance than the baseline CNN models for both prediction performance
and for validation of functional enhancers of genes.

2 Method
2.1 CNN Layers for Local Representations of 1D Data

The first input to our model is 1D data (epigenomic signals or DNA sequence). Regardless of the
types of 1D inputs, we use several CNN layers to find local representations of 5Kb bins of the genome.
We consider genomic regions of 6Mb in length as our input; hence, we have vectors of sizeN = 1200
after the CNN layers, each containing local representations of the 5Kb bins in the 6Mb region. We
define the set of local representations by H = {h1, h2, · · · , hN}, where hi ∈ RF and F = 64 is the
number of CNN filters at the last layer of CNN block. Then H is given to the next block, which is a
graph neural network (GNN) [5, 15, 14], where hi is the node feature of node i.

2.2 Graph Attention Layers for Integration via 3D Data

We employ the graphs extracted from H3K27ac HiChIP data in order to predict gene expression
(CAGE-seq) and capture gene regulatory mechanisms. We processed the HiChIP data by HiC-DC [2],
which provides significance scores (q-values) for all interactions by fitting a background model based
on genomic distance and other sources of systematic bias. We have filtered the processed HiChIP
contact matrix by keeping only the interactions having less than a (permissive) q-value of 0.1. As we
use the 5Kb resolution of the HiChIP data, we define a graph in which there is an edge between two
5Kb genomic bins if there is a significant interaction between them. The graph corresponding to an
input of 6Mb genomic region therefore has N = 1200 nodes whose features H = {h1, h2, · · · , hN}
have been learned in the previous CNN block.

The graph attention layer receives a graph G = (V,E) and a set of node features Ht =
{ht1, ht2, · · · , htN} from the previous layer t and outputs an updated set of node features Ht+1 =

{ht+1
1 , ht+1

2 , · · · , ht+1
N }. In each GAT layer we define two weight matrices: W t

p ∈ RF ′×F for
promoters (or self nodes) and W t

e ∈ RF ′×F for enhancers (or neighbor nodes). Note that here, unlike
previous graph neural networks [14], we do not include self-loops in the graph G. We have decoupled
self-loops and neighbor-loops because their functions are different in our problem, representing
the role of the promoters and enhancers, respectively. By only including the neighbor-loops in the
graph G, we aim to benefit from enhancers of genes, in particular distal enhancers that cannot be
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captured in local models. We define the self-attention mechanism for the nodes i and j at layer
t as βti,j = 1

|Ni|σ
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t
j

)
where atp ∈ RF ′

and ate ∈ RF ′
are two weight

vectors, σ(.) is the sigmoid function, Ni is the set of neighbors of node i (not including itself),
|Ni| is the number of neighbors of node i, and βti,j ∈ R is the attention weight from node j to
node i at layer t. By using a sigmoid function instead of a conventional softmax function, we give
extra freedom to the model to discard edges that are not related to enhancers. Therefore, here we
have

∑
j∈Ni

βti,j ∈ [0, 1] (as opposed to
∑
j∈Ni

βti,j = 1 when using softmax function). We also

account for the cardinality of the nodes by defining αti = σ
(
at
√
|Ni|+ bt

)
, where at ∈ RF ′

and

bt ∈ RF ′
are two weight vectors. Finally, we define the updates of the node features at the next

layer as ht+1
i = f
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where f is a nonlinearity function and ◦

is the element-wise product. We use an Exponential Linear Unit (ELU) for f . As in [14], we use
K heads and concatenate the features as ht+1

i =‖Kk=1 f
(
αt,ki ◦

(
W t,k
p hti +

∑
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βt,ki,jW
t,k
e htj

))
where ‖Kk=1 means concatenation of K independent heads. Therefore, ht+1

i will have KF ′ features.

2.3 Poisson Regression

After the GAT layers, the last layer is a CNN layer with exponential nonlinearity in order to predict the
CAGE-seq data in each bin. As the CAGE data are counts, we used Poisson regression, meaning that
the expected value of each (CAGE-seq TSS) output given the inputs is the mean of a Poisson distribu-
tion. Suppose X is the 1D input for a 6Mb region, G is its corresponding graph, Y = [y1, · · · , yN ]
is the observed CAGE signal across 5Kb bins, and fθi (X,G) is the predicted CAGE signal for the
bin i, where θ is the parameters of the model. Now we assume that yi|X,G ∼ Poisson(λi), where
λi = fθi (X,G) and E(Y |X,G) = fθ(X,G). Hence, the loss function is the negative log-likelihood
of the Poisson distribution Lθ = 3

N

∑2N/3
i=N/3

(
log Γ(yi + 1) + fθi (X,G)− yi log fθi (X,G)

)
, where

Γ(.) is the gamma function. Note that we train our model for the middle one third region (2Mb or
middle N/3 bins) instead of the whole 6Mb region (all N bins) in each batch; the reason is that we
want to capture the effects of distal enhancers for all genes. As we have processed HiChIP data up to
2Mb, all the genes in the middle 2Mb regions can see the effects of their distal enhancers.

3 Experiments

We consider two ENCODE human cell lines, GM12878 and K562, for which complete 1D and 3D
data are available. As a baseline model, we kept the first CNN layers intact and replaced the GAT
layers with dilated CNN layers whose dilation rate is multiplied by two in each layer. By using 8
dilated CNN layers, we increased the model’s receptive field up to 2.5Mb. Note that this technique
is the best we can do for capturing distal elements without using 3D information and has also been
employed in several methods like Basenji [4]. By comparing GRM-3D with this baseline CNN
model, we can see how much using 3D interactions can help in gene expression prediction and also
in determining functional enhancers. We used K = 4 and F ′ = 16 for GRM-3D models.
3.1 Prediction Performance

In each cell line, we held out chromosomes 3,8,12 for test and chromosomes 1,17,21 for validation
and trained on all remaining chromosomes except X and Y. Although our model predicts the CAGE
signal at all genomic bins, here we only looked at predictions in the GENCODE-annotated TSS
bins because CAGE-seq signals, unlike RNA-seq, only appear at TSS bins. In order to look at
the predictions for single genes, we restricted to predictions at bins with only a single TSS whose
position is at least 500bp from the bin boundaries. Table 1 shows the prediction results for the two
cell lines GM12878 and K562. We reported the loss values and Spearman correlation (SP) for three
different sets of genes: A is the complete set of genes; B is the set of genes with non-zero expression
("expressed genes", based on noise in data, defined as those whose CAGE is more than 5), and C is
the set of expressed genes having at least one neighbor in the graph.

We produced results for GRM-3D in both the CTA and CTS scenarios and their equivalent baseline
models. We see in Table 1 that using GRM-3D in both cell lines leads to better loss and SP than
the baseline models. We also observe that after restricting to expressed genes or to expressed genes
with neighbors in the graph, which is equivalent to having distal enhancer candidate elements, the
problem gets harder and the difference between GRM-3D and the baseline models increases. In the
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Table 1: Prediction performance on held-out test chromosomes 3,8,12 and cell lines GM12878 and K562. The bold font shows the best
result. In both frameworks, cell-type-agnostic (CTA) and cell-type-specific (CTS), GRM-3D outperforms the baseline model. A is the set of
all genes, B is the set of expressed genes, and C is the set of expressed genes with at least one neighbor in the graph. The last column shows the
log2 fold change in gene expression between GM12878 and K562. The loss is the negative log-likelihood averaged over genes, SP is Spearman
correlation, R is Pearson correlation, and MSE is mean squared error.

GM12878 K562 Log FC
Gene sets A : |A| = 1868 B : |B| = 970 C : |C| = 731 A : |A| = 1868 B : |B| = 894 C : |C| = 737 A : |A| = 1868

Metric Loss SP Loss SP Loss SP Loss SP Loss SP Loss SP R MSE
GRM-3D/CTA 142.80 0.8547 265.97 0.6336 296.50 0.5540 153.92 0.8528 312.43 0.6438 351.97 0.5998 0.7114 2.88

Baseline 179.52 0.8407 331.82 0.5755 359.36 0.48039 172.43 0.8477 351.88 0.6018 396.47 0.5579 0.6800 3.309
GRM-3D/CTS 186.55 0.7762 329.15 0.5402 369.27 0.4445 185.62 0.7830 366.32 0.5346 401.78 0.5003 0.5044 4.406

Baseline 220.08 0.7351 397.54 0.49658 452.96 0.4240 234.50 0.7064 454.99 0.4702 518.77 0.4294 0.2861 6.023

(a) (b)
Figure 1: Feature attribution applied to the GRM-3D model discovers the functional enhancers of genes. (a) Distributions of AUCPR for
identifying validated enhancer regions of 20 genes in K562 cells using CRISPRi-FlowFISH. GRM-3D outperforms the baseline model and
the previously proposed ABC model [3] in ranking the true enhancers among candidate enhancers for genes. Green triangles show the mean
values. (b) Prediction tracks of the GRM-3D and baseline models and saliency scores for the gene KLF1, for which the AUCPR values for
GRM-3D, baseline, and ABC models are 0.8089, 0.6945, and 0.3199, respectively. Middle green-shaded region is where we do predictions.
Saliency track of the baseline is noisy and non-informative, while saliency track of GRM-3D is sorting the importance of enhancers because it
only attends to relevant regions determined by HiChIP graphs. HiChIP arcs here show the intensity of graph edges to the KLF1 gene.

last column of Table 1, we report the Pearson correlation (R) and mean squared error (MSE) for the
true log2 fold change and the predicted log2 fold change between the cell lines GM12878 and K562
(set A). This again confirms the better performance of the GRM-3D compared to the corresponding
baseline models. Overall, these results validate our hypothesis that using 3D genomic interactions
and our proposed GRM-3D models can lead to improved gene expression prediction.

3.2 Validation of Enhancers

Thanks to feature attribution methods [10, 7, 13] for ML models, it is possibe to derive the important
input features for the prediction of a specific output. As we have built our model so that each gene
can be influenced by its potential enhancers through connections in the H3K27ac HiChIP graph,
we hypothesized that feature attribution analysis would allow us to identify distal enhancers that
contribute to the regulation of target gene expression. Data on functionally validated enhancers is not
abundant in the literature. CRISPRi-FlowFISH [3] is a recent method that interferes with candidate
enhancer regions using KRAB-dCas9 and measures the extent of decrease in the expression level of a
target gene. The developers of FlowFISH also defined a score called Activity-by-Contact (ABC) for
finding and ranking enhancers of a gene and is considered the current state-of-the-art for this problem,
which also uses 3D information (KR-normalized Hi-C).

We used two feature attribution methods: gradient by input in the CTS model and DeepSHAP [7] in
the CTA model. Both approaches gave similar results. Figure 1a shows the distribution of AUCPR
values for the 20 genes from the K562 FlowFISH data set with more than 10 candidate enhancers.
There are around 2700 enhancer-gene (E-G) pairs. We observe in Figure 1a that GRM-3D feature
attribution outperforms baseline models as well as ABC scores in ranking the importance of candidate
enhancers. Figure 1b shows an example of saliency scores (log2-scaled) for the gene KLF1. For
this gene there are 118 candidate enhancers, 5 of which are validated enhancers by FlowFISH (i.e.
interference leads to a significant decrease in expression). For this gene, our GRM-3D/CTA achieves
an AUCPR of 0.8089, while the AUCPR for the baseline model and ABC are 0.6945 and 0.3199,
respectively. By looking at the saliency scores of the baseline models, all regions appear noisy, and it
is hard to identify the real enhancers. However, the saliency scores of our GRM-3D models tend to
have high values in the regions where there are contacts with gene promoters in the 3D interaction
structure, giving the model opportunity to discover the functional enhancer regions.
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