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1 Introduction

The recent advancements in measuring devices for life sciences have resulted in the generation of
large biological datasets, which are extremely important for many medical and biological applications,
including disease diagnosis, biomarker discovery, drug development, and forensics (Li & Chen, 2014).
Generally, such datasets are substantially high-dimensional (i.e., many features with small number of
samples) and contain complex nonlinear patterns. Machine learning methods, including genome-wide
association studies (d > 105, n < 104) and gene selection (d > 104, n < 103) (Marx, 2013), have
been successfully applied to discover the complex patterns hidden in high-dimensional biological
and medical data. However, most nonlinear models in particular deep neural networks (DNN) are
difficult to train under these conditions because of the significantly high number of parameters.
Hence, the following questions naturally arise: 1) are all the features necessary for building effective
prediction models? and 2) what modifications are required in the existing machine-learning methods
to efficiently process such high-dimensional data?

The answer to the first question is to select the most relevant features, thereby requiring an appropriate
feature selection method (Ye et al., 2019; Ming & Ding, 2019; Liao et al., 2019). This problem, called
feature selection, consists of identifying a smaller subset (i.e., smaller than the original dataset) that
contains relevant features such that the subset retains the predictive capability of the data/model while
eliminating the redundant or irrelevant features (Yamada et al., 2014, 2018a; Climente-González et al.,
2019). Most state-of-the-art feature selection methods are based on either sparse-learning methods,
including Lasso (Tibshirani, 1996), or kernel methods (Masaeli et al., 2010; Yamada et al., 2018b,
2014). These shallow approaches satisfactorily work in practice for biological data. However, sparse-
learning models including Lasso are in general linear and hence cannot capture high-dimensional
biological data. Kernel-based methods can handle the nonlinearlity, but it heavily depends on the
choice of the kernel function. Thus, more flexibile approaches that can train an arbitrary nonlinear
transformation of features are desired.

An approach to learning such a nonlinear transformation could be based on deep autoencoders (Vin-
cent et al., 2010). However, deep autoencoders are useful for computer-vision and natural language
processing tasks, wherein a large number of training samples are available. In contrast, for high-
dimensional biological data, the curse of dimensionality prevents us from training such deep models
without overfitting. Moreover, these models focus on building useful features rather than select-
ing features from data. The training of autoencoders for feature selection results in the discrete
combinatorial optimization problem, which is difficult to train in an end-to-end manner.

To train neural networks on high-dimensional data without resulting in overfitting, several approaches
were proposed. Widely used ones are based on random projection and its variants (Dahl et al.,
2013; Wójcik & Kurdziel, 2019). However, their performances significantly depend on the random
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Figure 1: (A) Architecture of FsNet. (B) and (C) are the weight-predictor networks for the selection
and reconstruction layers, respectively.

projection matrix, and their usability is limited to dimensionality reduction only. Therefore, they
cannot be applied for feature selection. Another deep learning-based approach employs a concrete
autoencoder (CAE) (Balin et al., 2019), which uses concrete random variables (Maddison et al., 2017)
to select features without supervision. Although CAE is an unsupervised model, it can be extended
to incorporate a supervised-learning setup. However, we observed that this simple extension is not
efficient because it needs the large number of parameters in the first layer of CAE.

To address these issues, we propose a non-linear feature selection network, called FsNet, for high-
dimensional biological data. FsNet comprises a selection layer that uses concrete random vari-
ables (Maddison et al., 2017), which are the continuous variants of a one-hot vector, and a reconstruc-
tion layer that stabilizes the training process. The concrete random variable allows the conversion of
the discrete optimization problem into a continuous one, enabling the backpropagation of gradients
using the reparameterization trick. During the training period, FsNet selects a few features using
its selection layer while maximizing the classification accuracy and minimizing the reconstruction
error. However, owing to the large number of parameters in the selection and reconstruction layers,
overfitting can easily occur under a limited number of samples. Therefore, to avoid overfitting, we
propose using two tiny networks to predict the large, virtual weight matrices of the selection and
reconstruction layers. Consequently, the size of the model is significantly reduced and the network
can scale high-dimensional datasets on a resource-limited device/machine. Through experiments
on the real-world metagenome dataset (Lloyd-Price et al., 2019), we show that the proposed FsNet
outperforms SVM, CAE and Diet-networks in performance and gives slightly lower performance
than the state-of-the-art kernel methods. Moreover, we show that the required memory size of FsNet
is significantly smaller than that of CAE.

2 Problem Formulation

Let X = (x1, · · · ,xn)
> = (u1, · · · ,ud) ∈ Rn×d be the given data matrix, where x ∈ Rd

represents the sample vector with d number of features and u ∈ Rn the feature vector with n number
of samples. Let y = (y1, · · · , yn)> ∈ Rn be the target vector such that yi ∈ Y represents the
output for xi, where Y denotes the domain of the output vector y, which is continuous for regression
problems and categorical for classification problems. In this paper, we assume that the number of
samples is significantly fewer than that of the dimensions (i.e., n� d).

The final goal of this paper is to train a neural-network classifier f(·) : Rd → Y , which simultaneously
identifies a subset S ⊆ F = {1, 2 · · · d} of features of a specified size |S| = K � d, where the
subset can reproduce the remaining F\S features with minimal loss.

3 Proposed Method: FsNet

We aim to build an end-to-end, trainable, compact, feature selection model. Hence, we employ a
concrete random variable (Maddison et al., 2017) to select features, and we also use the weight-
predictor models used in Diet Networks to reduce the model size (Romero et al., 2017). We build
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FsNet, a simple but effective model (see Figure 1). As shown in Figure 1(A), although the selection
and reconstruction layers have many connections, they are virtual layers whose weights are predicted
from significantly small networks, as shown in Figures 1(B) & (C), respectively. The weight-predictor
networks (B) and (C) are trained on the feature embeddings.

The optimization problem of FsNet is given by

min
Θ

n∑
i=1

Loss(yi, fθc(ENCθe(x
S
i ))) + λ

n∑
i=1

‖xi − RECθr (DECθd(ENCθe(x
S
i )))‖22, (1)

where Loss(y, fθc) denotes the categorical cross-entropy loss (between y and fθc), ‖ · ‖2 the `2
norm, λ ≥ 0 the regularization parameter for the reconstruction loss, Θ all the parameters in the
model, SEL(·) the selection layer, xSi = SEL(xi), ENC(·) the encoder network, DEC(·) the decoder
network, and REC(·) the reconstruction layer.

Selection Layer: We first describe the selection layer, which is used to select important features in
an end-to-end manner. The feature selection problem is generally a combinatorial problem, but it
is difficult to train in an end-to-end manner because it breaks the propagation of the gradients. To
overcome this obstacle, a concrete random variable (Maddison et al., 2017), which is a continuous
relaxation of a discrete one-hot vector, can be used for the training, as it computes the gradients using
the reparameterization trick. Specifically, selecting the k-th feature of the input x can be expressed
as x(k) = e>k x, where ek ∈ Rd denotes the one-hot vector whose k-th feature is 1 and 0 otherwise.
The concrete variables for the kth neuron in the selection layer are defined as follows:

µ(k) =
exp ((log δ

(k)
s + g)/τ)∑d

j=1 exp ((log δ
(k)
sj + gj)/τ)

, k = 1, 2, . . . ,K, (2)

where g ∈ Rd is drawn from the Gumbel distribution. Additionally, τ denotes the temperature that
controls the extent of the relaxation, K the number of selected features, and ∆s = (δs,1, . . . , δs,d) =

(δ
(1)
s , . . . , δ

(K)
s )> ∈ RK×d, δ(k)s ∈ RK

>0 is the model parameter for concrete variables. Notably, µ(k)

becomes a one-hot vector when τ → 0.

Using the concrete variables M = (µ(1),µ(2), . . . ,µ(K))>, the feature selection process can be
simply written by using matrix multiplications as follows:

SEL(x) =Mx.

Because the feature selection process can be written by using matrix multiplications, it can be trained
in an end-to-end manner. However, the number of parameters in the selection layer is O(dK); it
depends on the size of the input layer d and the number of neurons in the selection layer K. Thus,
for high-dimensional data, the number of model parameters can be high, resulting in overfitting
under a limited number of samples n. We address both the issues by using a tiny weight-predictor
network ϕωs

(·) : Rb → RK
>0 to predict the weights δs,j = ϕωs

(φ(uj)) (see Figure 1(B)), where
φ(uj) ∈ Rb is the embedding representation of feature j and b ≤ n the size of the embedding
representation. The tiny weight-predictor network can also be trained in an end-to-end manner.

Encoder Network: The goal of the encoder network ENCθe(·) : RK → Rh is to obtain a low-
dimensional hidden representation h ∈ Rh from the output of the selection layer xS . The encoder
network is expressed as follows:

ENCθe(x
S) = σ(W

(e)
Le
σ(· · ·W (e)

2 σ(W
(e)
1 xS) · · · ), (3)

where xS = SEL(x) denotes the output of the selection layer, θe = {W (e)
` }

Le

`=1 the weight matrix,
Le the number of layers in the encoder network, and σ(·) an activation function.

Classifier Network: The classifier network fθc(·) : Rh → Y predicts the final output from the
hidden representation h = ENCθe(x

S) as follows:

fθc(h) = softmax(W (y)
Ly
σ(· · ·W (y)

2 σ(W
(y)
1 h) · · · ), (4)

where θc = {W (y)
` }

Ly

`=1, and Ly denotes the number of layers in the classifier network.
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Decoder Network: Generally, a decoder function is employed to reconstruct the original output.
However, in this paper, the decoder function DECθd(·) : Rh → Rh′

computes another hidden
representation h̃ ∈ Rh′

and defines the last reconstruction layer separately. The decoder function is
defined as follows:

DECθd(h) = σ(W
(d)
Ld
σ(· · ·W (d)

2 σ(W
(d)
1 h) · · · ). (5)

where h = ENCθe(x
S), θd = {W (d)

` }
Ld

`=1, and Ld denotes the number of layers in the decoder
network.

Reconstruction Layer: To reconstruct the original high-dimensional feature x, it must have O(dh′)
parameters and depend on the dimension d. Thus, in a manner similar to the selection layer, we use a
tiny network to predict the model parameters. The reconstruction layer is expressed as follows:

RECθr (h̃) =W
(r)h̃, (6)

where h̃ = DECθd(h), θr = W (r) ∈ Rd×h′
, and [W (r)>]j = ϕωr (φ(uj)) denotes the virtual

weights of the jth row in the reconstruction layer. The tiny network ϕωr (·) : Rb → Rh′
is trained on

φ(uj) ∈ Rb to predict the weights that connect the jth row of the reconstruction layer to all the h′

neurons of the last layer of the decoder network. In this paper, we use [W (r)>]j = tanh(Wωr
φ(uj)),

whereWωr
∈ Rh′×b is the model parameter for the tiny network.

4 Empirical Evaluation

We compared FsNet with CAE (Balin et al., 2019), which is a unsupervised, neural-network-based,
feature selection method, Diet Networks (Romero et al., 2017), HSIC Lasso (Yamada et al., 2014,
2018a; Climente-González et al., 2019), and mRMR (Peng et al., 2005). Notably, CAE and HSIC
Lasso are state-of-the-art, nonlinear feature selection methods, which are deep and shallow, respec-
tively. FsNet and CAE (Balin et al., 2019) were run on a Linux server with an Intel Xeon CPU
Xeon(R) CPU E5-2690 v4 @ 2.60 GHz processor, 256 GB RAM, and NVIDIA P100 graphics card.
HSIC Lasso (Yamada et al., 2014) and mRMR (Peng et al., 2005) were executed on a Linux server
with an Intel Xeon CPU E7-8890 v4 2.20 GHz processor and 2 TB RAM.

For FsNet and CAE, we conducted experiments on all the datasets using a fixed architecture, defined
as [d→ K → 64→ 32→ 16(→ |Y|)→ 32→ 64→ d], where d and |Y| are data dependent, and
K ∈ {10, 50}. Each hidden layer uses the leakyReLU activation function and dropout regularization
with a dropout rate of 0.2. We implemented FsNet in keras and used the RMSprop optimizer for all
the experiments. For the regularization parameter λ, we used λ = 1 for all the experiments. We
performed the experiments with 6000 epochs at a learning rate of η = 10−3, initial temperature
τ0 = 10, and end temperature τE = 0.01 in the annealing schedule for all the experiments.

Table 1: Classification accuracy of different methods on
the metagenome dataset on inflammatory bowel disease.

Accuracy
Method K = 50 K = 100
FsNet 0.907 ± 0.017 0.917 ± 0.014
CAE 0.750 ± 0.065 0.700 ± 0.067
HSIC Lasso (B=10) 0.931 ± 0.006 0.931 ± 0.006
HSIC Lasso (B=20) 0.942 ± 0.002 0.943 ± 0.002
mRMR 0.944 ± 0.002 0.933 ± 0.002
SVM 0.876 ± 0.002
Diet-networks 0.902 ± 0.023

We studied a metagenome dataset
(Lloyd-Price et al., 2019), which con-
tains information regarding the gut bac-
teria of 359 healthy individuals and 958
patients with inflammatory bowel dis-
ease. Specifically, 7 547 features are
KEGG orthology accession numbers,
which represent molecular functions to
which reads from the guts of samples
guts are mapped. We included three ad-
ditional features: age, sex, and race.

We selected 50 or 100 features on this
dataset using FsNet, CAE, HSIC Lasso, and mRMR. For HSIC Lasso, as the number of samples was
high, we employed the block HSIC Lasso (Climente-González et al., 2019), where B denotes the
tuning parameter of the block HSIC Lasso, and B = n is equivalent to the standard HSIC Lasso
(Yamada et al., 2014). The Diet-networks outperformed SVM. The proposed FsNet could achieve
better performance than Diet-networks with significantly less number of features, while CAE failed to
train the model due to the large number of model parameters. Moreover, the model compression ratio
between FsNet and CAE is 21.41, and thus we conclude that FsNet can obtain preferable performance
with much less number of parameters for high-dimensional data.
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