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Abstract

Single-cell RNA-seq is a powerful tool in the study of the cellular composition of
different tissues and organisms. A key step in the analysis pipeline is the annotation
of cell-types based on the expression of specific marker genes. Since manual
annotation is labor-intensive and does not scale to large datasets, several methods
for automated cell-type annotation have been proposed based on supervised
learning. However, these methods generally require feature extraction and batch
alignment prior to classification, and their performance may become unreliable
in the presence of cell-types with very similar transcriptomic profiles, such as
differentiating cells. We propose JIND, a framework for automated cell-type
identification based on neural networks that directly learns a low-dimensional
representation (latent code) in which cell-types can be reliably determined. To ac-
count for batch effects, JIND performs a novel asymmetric alignment in which the
transcriptomic profile of unseen cells is mapped onto the previously learned latent
space, hence avoiding the need of retraining the model whenever a new dataset
becomes available. JIND also learns cell-type-specific confidence thresholds to
identify and reject cells that cannot be reliably classified. We show on datasets with
and without batch effects that JIND classifies cells more accurately than previously
proposed methods while rejecting only a small proportion of cells. Moreover,
JIND batch alignment is parallelizable, being more than five or six times faster
than Seurat integration. Availability: https://github.com/mohit1997/JIND.

Introduction
Characterization of cell-types in a mixture of cells is an important step in single-cell genomic data
analysis. This is often accomplished by using a clustering algorithm on the gene expression vectors,
followed by manual labelling of clusters based on specific biological markers.

With the gain in popularity of single-cell RNA sequencing (scRNA-seq), carefully annotated large
single-cell datasets [1–3] have been made public in recent years. These datasets, combined with
supervised learning techiques, present a natural framework to transfer labels from an annotated
scRNA-seq dataset (source batch) to an unannotated dataset (target batch) [4–11]. However, off-the-
shelf classifiers do not perform well on this task because the source and target batches may exhibit
technical variability, generally referred to as batch effects. These batch effects reduce the reliability
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of the prediction models resulting in poor classification performance. Moreover, since cells can exist
in intermediate states during the process of differentiation [12], standard classification algorithms end
up misclassifying cells that are in transitioning states or cells that are outliers [13] due to the inherent
noise in the dataset.

To overcome these issues, we propose a novel framework based on neural netwroks (NNs) called
JIND for cell-type identification. JIND automatically learns a low-dimensional representation (latent
space) well suited for cell-type classification from the source batch itself. Then, to deal with batch
effects, JIND projects the target batch onto the previously learned latent space without changing
the source batch latent codes. This leads to an asymmetric alignment that eliminates the need to
retrain the NN-based prediction model. In addition, JIND estimates cell-type-specific confidence
levels during training, which capture the ease to distinguish each type from the rest. These confidence
levels are then used to filter out (that is, label as unassigned) cells that cannot be classified with high
confidence. Finally, the JIND framework allows the refinement of the parameters of the prediction
model via self-training [14, 15], by treating the high confidence predictions on the target batch as
new labeled data. We refer to this extension as JIND+.

We empirically show that JIND outperforms state-of-the-art methods on a variety of datasets, achiev-
ing approximately 97% classification accuracy on average. We also show that the proposed threshold-
ing scheme is robust to datasets of varying difficulties, rejecting only about 4% of cells. Finally, we
show that the misclassification rate can be meaningfully reduced with JIND+.
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Figure 1: Overview of JIND: JIND uses a source batch (a1) with a gene expression matrix and
corresponding cell-types to train a Neural Network-based prediction model (a2) which consists of
an encoder and a classifier subnetwork. The low-dimensional representation output by the encoder
subnetwork is denoted as the latent code. Note that this prediction model should not be directly
used to annotate the target batch due to the presence of batch effects. b) To account for the technical
variability across batches, batch alignment is required to align the source and target latent codes. c)
JIND uses adversarial training via a generator and discriminator pair to align the source and target
latent codes. The discriminator is trained to classify an input latent code either as a latent code
produced by the generator (negative label) or as the source latent code produced by the encoder
(positive label). In contrast, the generator is trained to fool the discriminator into misclassifying the
generator’s output as source latent code. Finally, the output of the trained generator (the aligned latent
code) is used by the classifier subnetwork to infer the cell-types of the target batch.
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Methods
JIND tackles the problem of supervised cell-type annotation of single-cell RNA sequencing data. The
label information comes from a source batch dataset: a gene expression matrix (Ns cells ×M genes),
and the corresponding cell-type annotations (Figure 1(a1)). The goal is to label the target batch (Nt

cells ×M genes), where the cell-type information is absent. While existing methods require separate
batch alignment techniques to be performed prior to classification, JIND trains a NN-based prediction
model on the annotated source batch and then uses adversarial training to align the target batch onto
the latent space learned by the NN. Thus, JIND is able to compensate for batch effects while avoiding
the need for retraining the model when new data becomes available.

The NN used by JIND consists of two subnetworks, an encoder and a classifier (Figure 1(a2). For
details on the architecture, refer to Supplementary Figure S1). First, the encoder network maps the
input gene expression vector linearly onto a 256-dimensional latent space, referred to as latent code,
which is then fed to the classifier subnetwork for predicting the cell-type. These two subnetworks are
trained jointly on the source batch by minimizing a weighted categorical cross entropy loss. Since the
target batch can have, in general, a different gene expression distribution than the source batch, the
latent code (i.e., the encoder output) for both batches will likely have different distributions. Therefore,
the latent code from the target batch needs to be modified so that the classifier subnetwork–which
was trained on the source batch–can reliably predict the true cell-type (Figure 1(b)).

The proposed alignment technique, which aims at removing batch effects while maintaining useful bio-
logical variability for classification, is inspired by both Generative Adversarial Networks (GANs)[16]
and methods developed for the Machine Learning problem known as domain adaptation[17]. More
precisely, JIND uses adversarial training (Figure 1(c)) to correct the latent code from the target batch
by learning a generator function to transform the distribution of the target latent code to that of the
source latent code. To learn this generator function, a binary discriminator function is simultaneously
learned. While the discriminator function aims at distinguishing between the generator’s output and
the source latent code, the generator function aims at fooling the discriminator into misclassifying the
generator’s output as source latent code. The output of the trained generator function is the aligned
latent code, and it is later used for cell-type inference.

Since it is possible that some cells in the target batch might be undergoing cell differentiation, or that
their gene expression might have abnormal patterns, JIND provides a structured way to reject (that is,
label them as unassigned) some of the predictions made by the aforementioned prediction model.
Specifically, JIND estimates cell-type-specific confidence thresholds from the source batch based on
the outlier fraction input by user (set to 5% by default) such that the overall misclassification rate is
minimized in a controlled manner. This is in comparison to other fixed-threshold-based rejection
schemes used in existing methods such as scPred[5], SVMRej[10] and ACTINN[4]. which do not
take into account the variability in ease of classification across different cell-types and datasets.

Finally, an extension to the JIND framework based on self-training [15, 14], coined JIND+, is
proposed. In JIND+, additionally, the confident predictions made on the target batch post alignment
are used to fine-tune the parameters of the encoder and classifier subnetworks.

Results
JIND can accurately annotate scRNA-seq datasets with batch effects: We compare JIND and
JIND+ with SVMRej [10], scPred [5], Seurat-LT (Seurat Label Transfer) [9] and ACTINN [4]. These
methods were selected as, in a recent study [10], SVMRej attained the best performance among
existing automated cell identification methods, including methods incorporating prior knowledge in
the form of marker genes. ACTINN and scPred were also among the best performing methods. We
also include Seurat-LT which, unlike the other methods, does not have a rejection module.

Table 1: scRNA-seq datasets used for evaluation.

Name [Batches] # Cells × # Genes #Cell
Types Batches

PBMC [10x_v3, 10x_v5] [18] 15476 × 1199 9 2
Pancreas [Bar16 [19], Mur16 [20], Seg16 [21]] 14058 × 2448 22 3
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For the performance evaluation, we consider datasets with batch effects described in Table 1 and
specify, in each case, the source and the target batch. For example, Pancreas Bar16-Mur16 denotes
that Pancreas Bar16 is the source batch and Pancreas Mur16 is the target batch.

We experiment with three pairs of source and target batches: PBMC 10x_v3-10x_v5, Pancreas
Bar16-Mur16 and Pancreas Bar16-Seg16. Since SVMRej, scPred and ACTINN do not internally
perform any batch alignment, these methods typically benefit from external integration tools [10].
Therefore, we also report their performance after aligning source and target batches using Seurat
integration [9]. Table 2 summarizes the results for these experiments. We observe that JIND+
consistently achieves slightly better raw accuracy than JIND in all cases. Moreover, JIND+ reduces
the rejection rates of JIND by a factor of 2 while keeping the effective accuracy almost identical. We
also observe that JIND and JIND+ outperform previously proposed methods in raw accuracy in all
cases, except for the PBMC dataset in which Seurat-LT achieves a raw accuracy 0.8% higher than
JIND+. Nonetheless, on both Pancreas datasets, JIND+ outperforms Seurat-LT by 9% on average.
When no external alignment is performed the rejection rates with SVMRej, scPred and ACTINN, for
all three datasets, are significantly higher than with JIND+. Notably, SVMRej and ACTINN reject
almost all cells in some cases. When SVMRej, scPred and ACTINN were evaluated after using Seurat
batch alignment, we observe that their rejection rates are significantly reduced. However, scPred still
rejects more than 10% of cells even after batch alignment in all three experiments. Our results are in
agreement with the review conducted by Abdelaal et al. [10], which concludes that SVMRej, scPred
and ACTINN benefit from batch alignment tools. However, JIND+ still outperforms ACTINN and
SVMRej, achieving approximately 3% higher raw accuracy. In comparison to scPred, JIND+ achieves
more than 7% higher raw accuracy on average. We also observe that using Seurat integration actually
worsens the classification performance of both JIND and JIND+ (Supplementary Table S1).

Finally, to analyze the possible causes for misclassifications, we perform a differential expression
analysis [22] (see Supplementary Figure S6) for specific cell-types between correct and false pre-
dictions made by JIND+ . Our analysis indicates that our misclassifications do not correspond to
arbitrary mistakes made by the prediction model, but rather to potential annotation errors.

JIND aligns cell-type clusters in the latent space: To further analyze the benefits of JIND alignment,
we selected four cell-types from Pancreas Bar16-Mur16 dataset namely, Alpha, Beta, Delta, and
Gamma. We observe that the NN-based prediction model (used in JIND), after being trained on the
source batch, rejects more than 50% of cells on the target batch. In contrast, after performing JIND
alignment, only 5% of cells are rejected and more than 98% of the remaining cells are classified
correctly. On comparing the distributions of the latent codes before and after alignment, we observe
that JIND is able to effectively align the latent codes for the two batches (Supplementary Figure S7).

In summary, we demonstrate that JIND+ is highly accurate and more practical than existing cell
annotation pipelines for transferring cell-type labels across different batches. JIND+ also provides a
controlled way of rejecting low confidence predictions to avoid erroneous annotation.

Table 2: Comparison of different cell classification methods. raw is the inital accuracy of the classifier,
rej is the percentage of cells rejected by the classifier and eff is the effective accuracy after rejecting
unconfident predictions. For SVMRej, scPred and ACTINN, we report results on both Batched and
Integrated data. Best raw accuracy rates are bold faced and rejection rates above 0.1 are colored red.

Datasets Metrics JIND JIND+ Seurat-LT SVMRej scPred ACTINN

Batched Integrated Batched Integrated Batched Integrated

PBMC
10x_v3-10x_v5

raw
rej
eff

0.971
0.07

0.986

0.974
0.03

0.985

0.981
-
-

0.956
0.99

1.000

0.962
0.05
0.975

0.931
0.10

0.957

0.946
0.10

0.971

0.956
0.37
0.990

0.965
0.05

0.980

Pancreas
Bar16-Mur16

raw
rej
eff

0.958
0.05

0.974

0.959
0.03

0.971

0.868
-
-

0.894
1.00
NA

0.921
0.04
0.939

0.729
0.45

0.726

0.870
0.18

0.931

0.874
0.99
1.000

0.923
0.07

0.953

Pancreas
Bar16-Seg16

raw
rej
eff

0.987
0.05

0.997

0.992
0.02

0.997

0.923
-
-

0.925
0.99

1.000

0.953
0.04
0.963

0.819
0.41

0.868

0.898
0.18

0.951

0.930
0.99
1.000

0.952
0.08

0.971
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