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Additional results

• Table S1 shows the impact of using Seurat Integation prior to training JIND prediction
model. Specifically, we compare two cases, Batched: when JIND and JIND+ are evaluated
on datasets containing batch effects versus, Integrated: when JIND and JIND+ are run after
Seurat integration on the same datasets. We observe that performing integration using Seurat
actually hurts the classification performance as compared to directly using JIND or JIND+.

• Figure S2 shows different gene expression patterns across the two groups, G1: Ductal cells
predicted as Ductal and , G2: Ductal cells predicted as Acinar, allowing differentiation
between the two populations of cells. On the contrary, when DE analysis was performed
on the groups, G1: randomly chosen subset of Ductal cells and , G2: remaining Ductal
cells, (Figure S4) we neither observe meaningful clustering nor descriptive gene expression
patterns necessary for differentiation. We can see the same results on the PBMC dataset
on Figure S3 and Figure S5. A summary for this experiment is provided in Figure S6
which shows the differentially expressed gene patterns between accurate predictions and
misclassifications made by JIND on cells with a chosen cell-type on both Pancreas and
PBMC dataset.



Datasets
PBMC

10x_v3-10x_v5
Pancreas

Bar16-Mu16
Pancreas

Bar16-Seg16
Batched Integrated Batched Integrated Batched Integrated

JIND
raw 0.971 0.968 0.958 0.946 0.987 0.946
rej 0.07 0.06 0.05 0.10 0.05 0.08
eff 0.986 0.985 0.974 0.979 0.997 0.979

JIND+
raw 0.974 0.971 0.959 0.961 0.992 0.961
rej 0.03 0.03 0.03 0.09 0.02 0.05
eff 0.985 0.978 0.971 0.980 0.997 0.980

Table S1: Comparing performances of JIND and JIND+ when the source and target batches are
integrated with Seurat (Integrated) versus when Seurat integration is not performed (Batched). raw is
the inital accuracy of the classifier, rej is the percentage of cells rejected by the classifier and eff is
the effective accuracy after rejecting unconfident predictions. Best raw accuracy rates among the two
cases (batched or integrated) are boldfaced.

3



Neural Network based Prediction Model

Encoder Classifier

Figure S1: NN-based prediction model employed by JIND for cell-type identification. The network
consists of two subnetworks, an encoder and a classifier, which are jointly trained. The encoder
subnetwork performs a linear transformation on the gene expression data (of dimension 5000 by
default) for a cell and outputs a 256-dimensional latent code. This is then input to the classifier
subnetwork which first uses a ReLU activation and then a one hidden-layered (with ReLU activation)
classifier outputs a probability vector indicating the likelihood of the cell belonging to each of the K
classes.
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Figure S2: Heatmap for all differentially expressed genes between two groups on Pancreas Mur16
dataset. Ductal cells predicted by JIND+ as: Ductal cells (G1) or Acinar cells (G2)
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Monocyte_FCGR3A classified as:
Monocyte_FCGR3A (G1) or Monocyte_CD14 (G2)
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Figure S3: Heatmap for all differentially expressed genes between two groups on PBMC 10x_v5
dataset. Monocytes FCGR3A cells predicted by JIND+ as: Monocytes FCGR3A cells (G1) or
Monocytes CD14 cells (G2).

6



Heatmap between ductal classified as ductal (G1)

 and  ductal (G2) 
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Figure S4: Heatmap for all differentially expressed genes among two randomly chosen groups of
Acinar cells present in Pancreas Mur16 dataset.
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Heatmap between ductal classified as Monocyte_FCGR3A (G1)

  Monocyte_FCGR3A (G2) 

NEGATIVE CONTROL

C1QA
VCL
LRRK2
ADM
SLAMF7
GAPT
CCL3
HIST1H2BF
MX1
ANKRD37
RUFY1
HLA−DMA
IGFBP7
IFITM1
CLEC10A
ID3
CD14
BCL11A
RP11−138A9.1
PHACTR1
ENHO
ARRDC4
TNFSF10
PYGL
IRAK3
MT2A

Group Group
G1
G2

0

1

2

3

4

5

Figure S5: Heatmap for all differentially expressed genes among two randomly chosen Monocyte
FCGR3A cells present in PBMC 10x_v5 dataset.
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a b

Monocyte_FCGR3A  cells classified as:
Monocyte_FCGR3A (G1) or Monocyte_CD14 (G2)

Ductal cells classified as:
Ductal (G1) or Acinar (G2)

Figure S6: Performance evaluation and differential expression analysis on two datasets. The
alluvial plots (top) reflect the performance of JIND+ on a) PBMC 10x_v3-10x_v5 and b) Pancreas
Bar16-Mur16 datasets. The tSNE plots (middle) illustrate the cell-type clusters of the target batch,
and highlight the two cell-types with the highest misclassification rates: a) Monocyte_FCGR3A and
Monocyte_CD14 and b) Acinar and Ductal. The heatmaps (bottom) show the top 20 differentially
expressed genes between a) Monocyte_FCGR3A cells classified as Monocyte_FCGR3A (G1) and
Monocyte_FCGR3A classified as Monocyte_CD14 (G2), and between b) Ductal cells classified
as Ductal (G1) and Ductal cells classified as Acinar (G2). The shown hierarchical clustering is
performed using all the differentially expressed genes.
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a) tSNE reduction in the latent 
space learned by JIND encoder

c) tSNE reduction in the latent space post 
batch alignment using JIND

d) Evaluation after alignmentb) Evaluation before alignment

Figure S7: JIND’s asymmetric alignment leads to accurate annotations on batched data. We
consider a subset of cell-types (Alpha, Beta, Gamma and Delta) from Pancreas Bar16 (source batch)
and Mur16 (target batch). a) tSNE reduction in the latent space shows significant distributional
mismatch due to batch effects. b) As a result, the alluvial plot shows that the prediction model
(without alignment) makes a large number of "unassigned" predictions. c) JIND batch alignment
removes these batch effects using adversarial training (learning the Generator and Discriminator
parameters), which minimizes the distributional discrepancies among the two batches in the latent
space learned by the encoder subnetwork. d) The alluvial plot thus obtained after performing batch
alignment on target batch shows accurate classification performance per cell-type.
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