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Abstract

Transcription factors (TFs) bind genomic DNA in a sequence-specific manner
to regulate gene expression. In vitro TF-DNA binding assays can measure the
intrinsic DNA binding affinity of individual TFs. Complementary in vivo TF
binding experiments can profile genome-wide TF occupancy that is influenced
by several factors besides intrinsic sequence specificity. Deep learning models
can accurately map genomic DNA sequence to in vivo TF binding profiles and
predict effects of sequence mutations on binding occupancy. However, it has
been difficult to provide biophysical interpretations of these predictions. Here, we
show that neural networks trained to model base-resolution genomic occupancy
profiles of TFs in yeast and humans can predict effects of sequence variation in and
around core binding sites that are remarkably correlated with corresponding binding
energy measurements from in vitro experiments. We show that the models can
learn exquisitely detailed motif-flanking sequence preferences of paralogous TFs
as well as effects of repetitive motif-flanking sequences on occupancy and affinity.
We also find that binding affinity has a much stronger contribution to genomic
occupancy signal of TFs in yeast as compared to occupancy profiles of TFs in
humans. Our results indicate that with appropriate correction of experimental
biases, deep learning models can learn to extract thermodynamic affinities de-
novo from genomic occupancy profiles. This unique biophysical interpretation of
predictions of deep learning oracles of genomic TF occupancy opens a new avenue
to perform massive in-silico perturbation experiments to comprehensively decipher
the influence of sequence context and variation on intrinsic affinity and in vivo
occupancy.



1 Introduction

Gene expression is modulated by sequence-specific binding of transcription factors (TF) to regulatory
DNA elements in the genome. Protein binding microarrays, HT-SELEX and BET-seq assays allow
estimation of relative binding energies (∆∆G) for libraries of synthetic DNA sequences [Le et al.,
2018]. PB-seq and PB-exo experiments measure binding affinity of TFs to in vitro purified genomic
DNA [Rossi et al., 2018]. These in vitro data have been used to learn thermodynamic models of DNA
binding affinity of individual TFs [Le et al., 2018, Rastogi et al., 2018]. However, in vivo binding of
TFs to chromatin is not only a function of equilibrium binding affinity, but also influenced by DNA
and nucleosome mediated cooperative and competitive interactions between TFs, local chromatin
state, three dimensional chromatin architecture and local TF concentration. Assays such as Chromatin
immunoprecipitation followed by sequencing (ChIP-seq, ChIP-exo) profile genome-wide in vivo
TF occupancy. Deep learning models such as convolutional neural networks (CNNs) can accurately
map genomic DNA sequences to in vivo binding profiles by learning predictive cis-regulatory motif
syntax and predict the effect of sequence variation on binding occupancy [Alipanahi et al., 2015,
Zhou and Troyanskaya, 2015, Avsec et al., 2019]. However, the quantitative relationship between
these blackbox predictive models of in vivo TF occupancy and the classic thermodynamic models of
binding affinity has been elusive [He et al., 2010]. Here, we show that CNNs trained to map genomic
DNA to quantitative base-resolution in vivo TF occupancy profiles from ChIP-exo and ChIP-seq
experiments in yeast and humans are able to extract binding affinities de novo from in vivo occupancy
and can predict the effects of subtle sequence variation on relative binding energy as measured by in
vitro BET-seq experiments with remarkable accuracy.

Figure 1: Model predictions against ∆∆G experimentally determined by BET-seq [Le et al., 2018]. Each point
represents an affinity measurement for a sequence containing an E-box motif with unique 5 base pair flanks
on either side with each plot containing 50, 000 predictions/measurements. Subfigure A contains predictions
of PB-exo Pho4 model (Spearman correlation of −0.90). Subfigure B contains predictions of PB-exo Cbf1
model (Spearman correlation of −0.77). Subfigure C contains predictions of ChIP-exo Cbf1 model (Spearman
correlation of −0.67).

2 CNN models of ChIP-exo and PB-exo binding profiles of two yeast TF
paralogs can predict relative binding energies of sequence variation
flanking core E-box motifs

We trained BPNet CNN models [Avsec et al., 2019] to map 546 base-pair DNA sequences from the S.
cerevisiae genome to base-resolution PB-exo and ChIP-exo profiles of two yeast TFs Pho4 and Cbf1
that both bind to E-box motifs [Rossi et al., 2018]. The correlation of predicted and observed read
coverage (TF occupancy) across peaks in held-out test chromosomes was on par with concordance
between replicate experiments (pearson correlation = 0.93), despite the small size of training sets (<
4K peaks). We used the trained models to predict Pho4 and Cbf1 occupancy for millions of synthetic
sequences which contained a high affinity core E-box motif (CACGTG) with systematic sequence

2



variations in the ±5 bp flanking the motif. We found that these predictions from the PB-exo/ChIP-exo
models had remarkable agreement with corresponding relative binding affinities (∆∆G) for the same
library of sequences estimated using in vitro BET-seq experiments [Le et al., 2018] (Figure 1). We
calibrated the predictions of the BPNet model to the binding energies using linear regression and
isotonic regression [Chakravarti, 1989].

Next, we used the DeepSHAP [Lundberg and Lee, 2017]) feature attribution method to infer base-
resolution importance scores for all bound sequences for each TF. These importance score profiles
were used to learn non-redundant motif representations for Pho4 and Cbf1 using the TF-MoDISco
algorithm [Shrikumar et al., 2018]). The derived motifs for the two TFs showed distinct flanking
sequence preferences that matched previously derived binding affinity motif models from BET-seq
data (Figure 2).

These results indicate the BPNet models are able to implicitly extract binding energies from the in
vivo occupancy profiles and can distinguish subtle differences in flanking sequence preferences of
two yeast TFs that bind very similar E-box motifs.

Figure 2: The top TF-MoDISco motifs for the PB-exo Pho4 model (subfigure A) and PB-exo Cbf1 model
(subfigure B) corresponded with the most favorable sites by relative binding affinity ∆∆G. From [Le et al.,
2018]: subfigure C shows Pho4 and Cbf1 mean ∆∆G values as a function of flanking sequence position (Top),
compared with the ScerTF database sequence logos (Bottom). Gray boxes show position of core consensus
CACGTG.

3 CNN model of ChIP-seq binding profiles of the NR3C1 TF in the human
genomes accurately predicts in vitro binding energies of mutations in motif

We trained similar BPNet CNN models to map 1346 bp sequences from the human genome to
base-resolution in vivo ChIP-seq profiles of the glucocorticoid receptor (NR3C1) in the A549 human
cell-line [Vockley et al., 2016]. Unlike the yeast TFs, the NR3C1 CNN model showed moderate
correlation between predicted and observed occupancy for peaks in held-out test chromosomes
compared to replicate concordance (Fig 3A,B), suggesting that local sequence cannot fully predict
in vivo occupancy of this TF in humans. Next, we used the trained CNN to predict occupancy for
hundreds of synthetic sequences containing the NR3C1 consensus motif sequence with random
sequence variation at one or two random positions in the in the motif. Remarkably, we found that
these predictions from ChIP-seq CNN model had very strong agreement with corresponding relative
binding affinities inferred from in vitro microfluidic experiments (Figure 3C). These results indicate
that even for human TFs, the CNN models are able to extract binding energies from the in vivo data
despite the fact that these in vivo measurements contain extraneous signal not encoded in the local
DNA sequence.
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Figure 3: Subfigure A shows the replicate vs replicate correlation for the relative binding energy (∆∆G)
obtained from microfluidic experiments. Subfigure B shows the correlation of observed and model predicted read
coverage across peaks in held-out test chromosomes. Subfigure C shows the correlation between the observed
∆∆G and the predictions from the same model.

4 Estimating the Binding Influence of Repetitive Sequences Flanking E-box
Motifs via In-Silico Experiments

Prior work [Afek et al., 2014] has shown that repetitive sequences may increase binding in-vitro. Mo-
tivated by this, we systematically interrogated the models with synthetic DNA sequences containing
different types and lengths of repetitive sequences flanking core E-box motifs to understand their
influence on binding affinity. (Figure 4) highlights two such experiments to understand the effect of
’CT’ dinucleotide repeats and ’GT’ repeats of varying lengths on Cbf1 binding. The trends observed
from the model predictions strongly agreed with smaller scale in-vitro measures of binding affinity,
which demonstrate that repetitive sequences can modulate binding affinity in-vitro.

Figure 4: We chose a low count dinucleotide shuffled test region background and inserted the extended motif
GTCACGTGAC. Then we added increasing lengths from 0 to 267 to the left of the motif and measured the counts
prediction of the model. Subfigure A shows the unfavorable effect of increasing lengths of ’CT’ dinucleotide
repeats on Cbf1 binding as predicted by ChIP-exo derived model. Subfigure B shows the favorable effect of
increasing lengths of ’GT’ repeats on Cbf1 binding as predicted by PB-exo derived model. Interestingly, both
figures show a saturating reaction to the increasing repeat lengths up to 150 bp.

5 Conclusion

Our results indicate that deep learning models can extract thermodynamic affinities de-novo from in
vivo occupancy profiles of TFs in yeast and humans. This biophysical interpretation of predictions of
deep learning oracles of genomic TF occupancy opens a new avenue to perform massive in-silico
perturbation experiments to comprehensively decipher the influence of sequence context and variation
on intrinsic affinity and in vivo occupancy.
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