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Abstract 

Deep learning models such as convolutional neural networks are able to accurately map biological 
sequences to associated functional readouts and properties by learning predictive de novo 
representations. In-silico saturation mutagenesis (ISM) is a popular feature attribution technique for 
inferring contributions of all characters in an input sequence to the model’s predicted output. The main 
drawback of ISM is its runtime, as it involves multiple forward propagations of all possible mutations of 
each character in the input sequence through the trained model to predict the effects on the output. We 
present fastISM, an algorithm that speeds up ISM by a factor of over 10x for commonly used 
convolutional neural network architectures. fastISM is based on the observations that the majority of 
computation in ISM is spent in convolutional layers, and a single mutation only disrupts a limited region 
of intermediate layers, rendering most computation redundant. fastISM reduces the gap between 
backpropagation-based feature attribution methods and ISM. It far surpasses the runtime of 
backpropagation-based methods on multi-output architectures, making it feasible to run ISM on a large 
number of sequences. An easy-to-use Keras/TensorFlow 2 implementation of fastISM is available at 
https://github.com/kundajelab/fastISM, and a hands-on tutorial at https://tinyurl.com/y26ytojn.


Introduction 

Deep learning models of biological sequences such as DNA have been highly effective on several key 
prediction tasks such as prediction of protein-DNA binding, splicing and molecular effects of genetic 
variants1–5. Convolutional neural networks (CNNs) are widely used architectures for modeling regulatory 
DNA since they are well suited to capture known properties and invariances encoded in these 
sequences2,4,6. For example, convolutional filters are reminiscent of classical DNA motif representations 
known as position weight matrices (PWMs)7. Also compared to recurrent neural networks (RNNs)8,9,10, 
CNNs have the advantage of being more computationally efficient.


Several feature attribution methods have been developed to infer contribution scores (or importance 
scores) of individual characters in input sequences with respect to output predictions of neural network 
models such as CNNs. A popular class of feature attribution methods use backpropagation to efficiently 
decompose the output prediction of a model, given an input sequence, into character-level attribution 
scores11–14. These attribution scores can be used to infer predictive subsequences within individual input 
sequences which can then be aggregated over multiple sequences to learn recurring predictive features 
such as DNA motifs15. 

In-silico saturation mutagenesis (ISM) is an alternate feature attribution approach that involves making 
systematic mutations to each character in an input sequence and computing the change in the model’s 
output due to each mutation. ISM has been used to score the effects of genetic variants in DNA 
sequences2,6,16. However, ISM can be orders-of-magnitude more computationally expensive than 
backpropagation-based feature attribution methods5, since it involves a forward propagation pass of the 
model for every mutation of every position in an input sequence. By contrast, backpropagation-based 
methods can compute attribution scores of all possible characters at all positions in an input sequence 
in one or a few backward propagations of the model. The inefficiency of ISM is particularly onerous when 
it is performed on a large number of sequences or for a large number of models, as is often the case16.


At the same time, ISM offers salient benefits over backpropagation-based methods. In comparison to 
other feature attribution methods that are often heuristic in nature, ISM faithfully represents the model’s 
response to mutations at individual positions. This makes it the method of choice when evaluating the 
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effect of genetic variants on the output1,2,16, and it is also used as a benchmark reference when 
evaluating fidelity of other feature attribution methods17. Unlike ISM, backpropagation-based methods 
like DeepLIFT and Integrated Gradients rely on a predefined set of “neutral” input sequences that are 
used as a reference to compute attribution scores. The choice of reference sequences can influence the 
scores and so far the selection of reference sequences has been ad-hoc5. The advantages of ISM are 
more apparent in the case of multi-output models. Each forward propagation performed during ISM 
reveals the impact of a single mutation on every output of the model. For example, a recent class of 
models called profile models have been developed to map regulatory DNA sequences to base-resolution 
binding profiles of proteins18. These models output a vector of signal values that is often as long as the 
input sequences. ISM can reveal how perturbing individual nucleotides in the input alters the signal 
across all positions in the output profile. By contrast, backpropagation-based importance scoring 
methods need to perform a separate backpropagation for every position in the output profile in order to 
provide comparable information, which would linearly increase the computational cost in the number of 
outputs. For these reasons, a computationally efficient implementation of ISM would be attractive.


We introduce fastISM, an algorithm that speeds up ISM for CNNs. fastISM is based on the observation 
that CNNs spend the majority of computation at prediction time in convolutional layers and that single 
point mutations in the input sequence affect a limited range of positions in intermediate convolutional 
layers. We benchmark the speedup obtained by running fastISM on a variety of architectures and output 
types and show that fastISM can achieve order-of-magnitude improvements over standard ISM 
implementations. fastISM reduces the gap between ISM and backpropagation-based methods in terms 
of runtime on single-output architectures, and far surpasses them on multi-output architectures.


Results 

In-silico mutagenesis for CNNs is bottlenecked by redundant computations in convolution layers 

We motivate fastISM by using an example based on the multi-task Basset CNN model that maps 1000 
bp DNA sequences to binary labels of chromatin accessibility across 100s of cell types and tissues 
(tasks)6. We consider a slight modification of the original architecture. We map 1000bp input sequences 
to 10 binary scalar outputs. In addition, all convolution layers are assumed to be padded such that the 
length of the output sequence is the same as the input to the layer (Fig 1). For a given convolution layer, 
the number of computations is proportional to kernel size, input filters, output filters and output length. 
The numbers in black in Fig 1 show the approximate computations required at each convolution and 
fully connected layer for a single forward propagation. The computations required in the convolutional 
layers combined exceed that of the fully connected layers by a factor of 50x. 


For a given reference input sequence, a standard implementation of ISM involves highly redundant 
computations. Typically, ISM is implemented by inserting mutations at each position in the input one at a 
time and making a forward pass through the entire model using the perturbed sequences as inputs. 
However, local perturbations in the input only affect local regions in intermediate convolutional layers, 
while regions farther away remain identical to their values for the reference (unperturbed) input 
sequence. For each layer, the regions that are affected by the single base pair mutation in the input, and 
the minimal regions required to compute the output of the next layer are shown in Fig 1. By design, a 
single mutation in the input sequence has the potential to affect every position in the fully-connected 
layer; thus, the activations of all subsequent layers in the network must be recomputed for the mutated 
input, as is the case with standard ISM. By restricting ISM computations to only positions affected by 
the input mutation at each layer, the number of computations can theoretically be reduced from 
approximately 271M to 15.5M computations (~17x). This suggests that it should be possible to define a 
custom model that performs only the required computations for a mutation at each input position. 
However, it would be cumbersome to write an architecture specifically for the purpose of ISM for each 
model. Hence, we developed fastISM, a method to speed up ISM by leveraging the above mentioned 
redundancies without requiring any explicit re-specification of the model architecture by the user 
(Supplementary Methods).




Fig 1. Annotated diagram of a Basset-like architecture6 on an input DNA sequence of length 1000, with a 1 base-
pair mutation at position 500. Positions marked in red indicate regions that are affected by the point mutation in the 
input. Positions marked in yellow, flanking the positions in red, indicate unaffected regions that contribute to the 
output of the next layer. Ticks at the bottom of each layer correspond to position indices. Numbers on the right in 
black show the approximate number of computations required at that layer for a standard implementation of ISM. 
For convolution layers, the numbers in gray and green indicate the minimal computations required. We omit layers 
such as activations and batch normalization for simplicity, as they do not change the affected regions.


fastISM yields order-of-magnitude improvements in speed for different architectures 

fastISM takes as input any sequence model and first reduces it to a computational graph representation. 
It chunks the graph into appropriate segments that can each be run as a unit. The model is augmented 
to return intermediate outputs at the end of each segment for unperturbed inputs. For a given set of 
input sequences, these intermediate outputs are cached. A second model is then initialized, that largely 
resembles the original model, but incorporates mechanisms to concatenate slices of the cached 
unperturbed intermediate outputs with the affected intermediate outputs, and compute each layer’s 
output on the least required input. For each group of sequences, fastISM is run on multiple batches such 
that sequences in a given batch are all perturbed at the same position. 


We benchmarked fastISM against a standard implementation of ISM. We choose 3 types of models that 
take DNA sequence as input— Basset6, Factorized Basset19 and BPNet18. The first two output scalar 
values for each output task, whereas BPNet outputs a profile vector of length equal to the input 
sequence length, and a scalar count. ISM is performed by recording the outputs for all 3 alternate 
mutations at each position. We benchmark on 1000bp and 2000bp length inputs. We also compare 
fastISM to three backpropagation-based feature attribution methods — Gradient x Input (input masked 
gradient), Integrated Gradients12, and DeepSHAP13. We used DeepSHAP, an extension of DeepLIFT, as it 
has a more flexible implementation of the DeepLIFT approach. 50 steps are used for Integrated 
Gradients with a single default reference of all zeros, and 10 dinucleotide reference sequences are used 
for DeepSHAP. For single scalar output models, the backpropagation-based methods are run with 
respect to the scalar output. For BPNet, the methods are run with respect to each output position in the 
profile vector as well as the scalar output, which multiplies their runtime by the number of output tasks. 
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While ISM returns one value (change in output score) for each of the 3 alternative nucleotides (with 
respect to the observed nucleotide) at each position; Integrated Gradients, DeepSHAP and Gradients 
return one value for each of the 4 possible nucleotides at each position.


The results are summarised in Table 1. For the Basset and Factorized Basset architectures, fastISM 
speeds up ISM by more than 10x when computing importance scores for a single output task, and the 
speedup increases with increasing input sequence length. This is expected since, for a fixed 
architecture, the length of the affected regions in the convolutional layers are independent of input 
sequence length. fastISM runtimes, though slower than Gradient x Input, are competitive with runtimes 
of Integrated Gradients (within 2x) and DeepSHAP (within 4x) for single scalar output models. The 
speedup of fastISM for the BPNet architecture relative to standard ISM is more modest— 1.6x for 
1000bp input and 2.1x for 2000bp input. This can be attributed to the large receptive fields for the later 
dilated convolutions. The regions affected by a mutation in the input sequence span a sizeable fraction 
of intermediate layers, and the computations involved beyond those layers approach those of a standard 
implementation. For the BPNet architecture which outputs a profile vector, DeepSHAP and Integrated 
Gradients take over 50x time of the fastISM implementation and are not viable for interrogating output 
position specific importance scores. Thus, fastISM speeds up ISM by an order-of-magnitude and 
narrows the gap in compute time between backpropagation-based methods and ISM.


Table 1: Comparison of fastISM with standard ISM, Gradient x Input, Integrated Gradients with 50 steps and a 
single all-zeros reference, and DeepSHAP with 10 references for 3 different models with 1000bp and 2000bp length 
inputs. All times in seconds per 100 input sequences. Time relative to fastISM in parentheses. For BPNet models 
which output a profile vector as well as a count scalar, Gradient x Input, Integrated Gradients and DeepSHAP were 
computed in a loop with respect to each output of the profile and the count scalar (*). 

Conclusions 

In-silico saturation mutagenesis (ISM) is an important post-hoc technique that has gained applicability as 
a tool to interpret deep learning models for genomics and to interrogate the effect of variants. ISM has 
largely been treated as a static method with unfavourable time complexity compared to more recent 
backpropagation-based model interpretability methods. We challenge this notion by introducing fastISM, 
a performant implementation of ISM for convolutional neural networks. fastISM leverages the simple 
observation that the majority of computations performed in a traditional implementation of ISM are 
redundant. fastISM improves runtime of ISM by over 10x for commonly used convolutional neural 
networks, and a factor of 2x for profile networks with exponentially wide dilated convolutions. This 
brings down ISM’s runtime in the ballpark of backpropagation-based methods such as Integrated 
Gradients and DeepSHAP for single-output models, and dramatically surpasses the runtime of 
backpropagation-based methods for multi-output methods, making it more feasible to run ISM genome-
wide and on a large number of models. 


Architect-
ure

Layers Input 
Size

No. of 
Outputs

fast 
ISM 

Standard 
ISM 

Gradient x 
Input

Integrated 
Gradients

Deep 
SHAP

Basset 3 Conv + 3 
max pool, 3 
fully connected

1000 1 2.70 27.36 (10.1) 0.04 (<<1) 2.34 (0.8) 1.75 (0.7)

2000 6.49 100.44 (15.4) 0.08 (<<1) 4.61 (0.7) 3.03 (0.4)

Factorized 
Basset

9 Conv + 3 
max pool, 3 
fully connected

1000 1 5.47 68.97 (12.6) 0.09 (<<1) 4.82 (0.9) 2.64 (0.5)

2000 18.04 262.24 (14.5) 0.17 (<<1) 9.47 (0.5) 4.63 (0.25)

BPNet 2 Conv, 9 
Dilated Conv, 
skip 
connections

1000 1000 + 1 28.97 46.09 (1.6) 41.49* (1.4) 4399* (151) 1743* (60)

2000 2000 + 1 81.52 173.96 (2.1) 126.41* 
(1.5)

12440* (152) 6427* (78)
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