
Supplementary Methods 

fastISM Algorithm Details 

fastISM builds upon the observation that local perturbations in the input sequence tend to affect only 
local regions in the convolutional layers. These regions are narrower in the earlier convolutional layers, 
and grow wider with increasing depth. Given a mutation at a fixed position in the input sequence, 
standard implementations recompute intermediate outputs from unperturbed regions farther away from 
the mutation that do not change after introducing the mutation. fastISM computes these intermediate 
outputs once for each reference unperturbed input sequence and caches them. For each different 
positional mutation in the input, appropriate windows around perturbed regions can be reused at each 
intermediate layer. fastISM restricts computation in convolutional layers to only the affected regions and 
unperturbed flanking regions around it, which typically depend on kernel width and dilation rate.


fastISM takes a Keras model as input. The main steps of fastISM are as follows:

● One-time Initialization:


○ Obtain the computational graph from the model and chunk it into segments that can be run 
as a unit


○ Augment the model to create an “intermediate output model” (IntOut model) that returns 
intermediate outputs at the end of each segment for reference input sequences


○ Create a second “mutation propagation model” (MutProp model) that largely resembles the 
original model, but incorporates as additional inputs the necessary flanking regions from 
outputs of the IntOut model on reference input sequences between segments


● For each batch of input sequences:

○ Run the IntOut model on the sequences (unperturbed) and cache the intermediate outputs at 

the end of each segment

○ For each positional mutation:


■ Introduce the mutation in the input sequences

■ Run the MutProp model feeding as input appropriate slices of the IntOut model outputs


Each of these steps is described in more detail in the following subsections.


Obtaining a Simplified Computational Graph from the Keras Model 
Keras allows defining models through their Sequential and Functional API. Models can also be 
recursively defined and used as building blocks of other models. This necessitates a representation that 
is easier to manipulate and independent of how the model is specified by the user. The input Keras 
model is converted to a graph representation. The method runs recursively on sub-models (if any), and 
finally returns a bipartite graph that consists of tensors and Keras layers. A tensor is derived from a 
single layer (in-degree of 1). While most layers also take in one input tensor, certain aggregation layers 
such as Add can have an in-degree greater than 1. Currently, a limited set of Keras layers are supported 
that span the most commonly used operations for sequence based models.


The Slice-Assign Operation 
Slice-Assign operation is a custom operation written in Tensorflow that takes in two tensors  x  and  y , 
an index  i  and performs the operation  x[:,i:i+y.shape[1]] = y . Thus it overlays  y  on  x  starting 
from index  i . Typically,  x  is a slice of unperturbed intermediate output at a particular layer (from the 
IntOut model), and  y  is the perturbed tensor at the intermediate layer. The MutProp model that 
performs the main ISM computation given a perturbed input relies on the Slice-Assign operation to stitch 
the perturbed regions ( y ) with the unperturbed regions ( x ).




Segmenting the Computational Graph 
The computational graph is separated into segments that are run as a unit. The underlying idea is that 
the perturbed region will be overlaid on the unperturbed intermediate outputs from the IntOut models 
only at the junction of two segments through a Slice-Assign operation, and not within a segment. 
Consider for example a convolutional layer followed by an activation layer and then a batch 
normalization layer. For the activation and batch normalization layers, the output at the ith position 
depends only on the input at the ith position. Hence, they would not require any additional unperturbed 
flanking intermediate outputs for their computation. These two layers can thus be merged with the 
preceding convolution layer into a single segment. This would keep the number of intermediate outputs 
that are cached to a minimum, as well as the number of Slice-Assign operations required. 


In general, max pool layers may require additional unperturbed flanking intermediate outputs. As seen in 
the first max pool layer in Fig 1 which has a size of 3, the max pool requires two additional positions at 
its left edge. This would necessitate that the max pool layer be in a different segment as the preceding 
convolution. However, using a simple modification, the max pool layer and the preceding convolution 
can be merged into a single segment. Given an input mutation region, coordinates can be computed 
such that the output of the convolution will be sufficient for the max pool layer. In the example of Fig 1, 
this would mean that for a mutation at index 500 in the input sequence, instead of providing nucleotides 
from positions 482-519 as input, the region can be expanded two bases to the left to span 480-519. As 
a result, the output of the first convolution will span 489-510, and the max pool layer would not require 
any additional inputs. This adds a slight increase to the computations performed by the convolution 
layer, but decreases the number of intermediate outputs stored and Slice-Assign operations.


Thus, in general, convolution layers are merged with other “see-through layers” (such as activations and 
batch normalization) as well as max pool layers into one segment. Every new convolution layer starts a 
new segment. Aggregation layers that take multiple inputs, such as Add, also start a new segment. Once 
a “stop layer”, such as Flatten or Reshape layer is reached, it is assumed that all positions of 
downstream layers are affected by the mutation. Thus, before a stop layer, the Slice-Assign operation 
overlays the perturbed regions over the entire unperturbed intermediate output at that layer. All 
downstream computations then are equivalent to that in a standard ISM implementation.


Constructing the Intermediate Output (IntOut) Model 
Once the graph is segmented, the tensors in the computational graph that lie at the junction of two 
segments are identified. A new IntOut model is created that resembles the input model, but returns as 
additional outputs the tensors that are at the junction of two segments. The weights of all layers are set 
to be equal to those of the input model.


Perturbed Range Calculations for Segments 
The first segment begins with the input sequence tensor. Typically, a mutation is introduced at each 
position in the input sequence, and this gives us a list of single-character ranges that are perturbed. 
Starting with this list of perturbed ranges, we can recursively compute the ranges of the output 
perturbed regions for all segments, as well as the minimal range of the input required to compute the 
corresponding output. This minimal range is used to slice the unperturbed intermediate output that is 
combined through a Slice-Assign operation with the perturbed output of the previous segment. As seen 
in Fig 1, for the first segment that would comprise the first convolution and max pool layers, the 
perturbed input region is 500-501. Providing input sequence from 480-519 (explained in section on 
Segmenting the Computational Graph), the output perturbed range at the end of the max pool layer 
would span 163-170. 


To achieve this, we work out rules for convolutional and max pool layers. For each of these layers, given 
an input range of perturbed region, we compute the range of the flanking unperturbed region required, 
and the corresponding output perturbed region indices, taking special care when the perturbed ranges 



are close to the beginning or end of the sequence. Given multiple layers within a segment, these values 
can be chained together to obtain the range of flanking unperturbed region and output perturbed region 
indices for the segment. For aggregation layers as Add layers that take multiple inputs, the input 
perturbation region is chosen such that it spans the perturbation regions of all inputs.


Constructing the Mutation Propagation (MutProp) Model 
The MutProp model largely resembled the original input model. At the junctions of segments, two 
additional inputs are added to the MutProp model— the slice of unperturbed output from the IntOut 
model at that segment, and a scalar index starting at which the perturbed output of the previous layer is 
overlaid on the unperturbed output. These are combined through a Slice-Assign operation. The weights 
of all layers are set to be equal to those of the input model. Notably, the padding of all convolutional 
layers is set to 0 since the models run on subsets of the entire tensor.


Execution on Input Sequences 
fastISM runs on batches of input sequences, all of which are mutated at all specified positions in the 
input. For each batch of input sequences, the IntOut model is run once on the sequences (unperturbed) 
and the intermediate outputs returned from the end of each segment are cached. For each positional 
mutation, the MutProp model is run by feeding as input slices of the IntOut model’s outputs (after 
appropriate padding) and the indices required for the Slice-Assign operations.


Handling Additional Non-sequence Inputs 
fastISM also allows models that take in additional inputs apart from the primary sequence input which is 
mutated. All nodes in the graph that are exclusively derived from secondary non-sequence input are 
assumed to be constant through the ISM. When the graph is segmented, secondary non-sequence 
inputs are processed after primary sequence input. Descendant nodes of non-sequence inputs that 
merge with descendants of the sequence input before a “stop layer” (such as Flatten, Reshape and 
Dense, after which all positions of downstream layers are assumed to be affected by the input mutation) 
are not allowed in the current implementation. For nodes that merge with sequence input after a stop 
layer (e.g. through a Concatenation), the output before merging is cached and reused. This is another 
way of avoiding redundant computation, as these computations that operate on non-sequence input 
that are unaffected by the mutation will not be repeated for each mutation.


Benchmarking  

In order to benchmark fastISM, we compare it with a standard implementation of ISM. The standard 
implementation involves incorporating a mutation in the batch of sequences and running the model on 
the perturbed sequence, for all mutations. We benchmark the models on 3 architectures:


1. Basset architecture which consists of 3 sets of convolutions + max pool layers, followed by 3 fully 
connected layers


2. Factorized Basset architecture which is similar to the Basset architecture except the 3 convolutions 
are replaced by multiple convolutions with narrower kernels. In total, it consists of 9 convolutions, 3 
max pool layers and 3 fully connected layers


3. BPNet architecture, which performs an initial convolution on the input sequence, followed by 9 
dilated convolutions for which the dilation rate increases as 2i where i corresponds to the ith dilation. 
Skip connections are added such that input of each dilation layer is added to its output. The model 
has two outputs: the first is a transposed convolution on the flattened output of the dilated 
convolutions, the second is a fully connected layer on top of Global Average Pool output of the 
dilated convolutions. The transposed convolution outputs a profile vector, while the fully connected 
layer outputs a count scalar.




We notice that fastISM tends to exhibit overhead costs and is slow for small batch sizes. Hence we 
swept batch sizes from as small as 64 to as large as 4096 that could fit in GPU memory for both fastISM 
and the standard implementations. For a batch of input sequences, we introduced all 3 alternate 
mutations at the ith position. We recorded the best times per 100 examples across these batch sizes. All 
benchmarking is performed on random input tensors with randomly initialized models.


We also ran three backpropagation-based methods for comparison for the same models. We used a 
version a few commits after v0.36.0 of DeepSHAP (https://github.com/slundberg/shap/tree/f603b3287), 
v0.5.4 of the library Alibi for Integrated Gradients (https://github.com/SeldonIO/alibi/tree/v0.5.4) and a 
simple custom implementation of Gradient x Input. Input batch sizes for DeepSHAP and Gradient x 
Input, and internal batch sizes for Integrated Gradients were varied and the best time per 100 examples 
was recorded. We used 50 steps for Integrated Gradients (with a single all-zeros reference; runtime 
would linearly increase if more references were used) and 10 dinucleotide shuffled sequences as 
reference DeepSHAP. Note that for these methods, importance scores are computed for each character 
at each position in the input. fastISM and standard ISM implementations introduce 3 alternate mutations 
at each position and thus return three values for each position in the input sequence.


Regarding the runtime of DeepSHAP: in the DeepSHAP implementation, each batch consists of a single 
input sequence and its corresponding reference values; thus, batch sizes are not as ideal as in the case 
where the importance scores for multiple input sequences could be calculated in the same batch. 
Further, the DeepSHAP implementation duplicates the input sequences to align with the number of 
references (https://github.com/slundberg/shap/blob/f603b3287/shap/explainers/_deep/
deep_tf.py#L298); these aspects contribute to the slower runtime of DeepSHAP relative to a hypothetical 
ideal implementation. We used DeepSHAP because the implementation can work with diverse model 
architectures and supports dynamic references.


All experiments were performed on a CentOS Linux release 7.6.1810 machine with 128GB RAM. A single 
NVIDIA Tesla P100-PCIE-16GB GPU was used, with CUDA v10.1.168, CUDNN v7.6.4, and TensorFlow 
v2.3.0. fastISM v0.4.0 (https://github.com/kundajelab/fastISM/tree/v0.4.0) was used for all benchmarks.


fastISM Implementation 

fastISM has been implemented in TensorFlow v2.3.0 and supports Keras sequence models. The 
implementation is available at https://github.com/kundajelab/fastISM. fastISM provides a simple to use 
API for performing ISM:


When fastISM is initialised on an input model, it checks by default if the output for a small batch of 
sequences matches that of a standard non-optimized implementation of ISM. This ensures that any 
internal inconsistencies in the implementation are caught before the user runs fastISM on multiple 
sequences.


It also provides support for multiple-input models, choosing different ranges to perturb in the input and 
specifying the perturbation values. Full functionality is documented in the repo.

from fastism import FastISM
 
# any Keras model  
fast_ism_model = FastISM(model)  
 
for seq_batch in sequences:  
    # seq_batch has dimensions (batch_size, seq_length, alphabet_size) 
    ism_seq_batch = fast_ism_model(seq_batch)  
    # ism_seq_batch has dimensions (batch_size, seq_length, num_outputs)
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