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Introduction. Bacterial infections by pathogens such as Mycobacterium tuberculosis and Clostridium
difficile often occur as mixed infections, whereby a single patient is infected by several different strains
of the same organism. The identification of such mixed infections can be important for reasons including
both patient-level decisions as well as public health measures. In the latter setting, if the tracing of the
origins of the mixed infection is needed, it may be additionally required to separate the mixed infection
into its constituent strains. The separation may also be informative when the mixed infection is hetero-
resistant, namely, when some, but not all, the strains are resistant to a particular antimicrobial drug.
Moreover, a failure to identify the within-host pathogen diversity can lead to misdiagnosing a relapse
and reinfection. However, so far, the problem of identifying mixed infections and separating them into
their constituent strains has not received a sufficient amount of attention in the literature.

Although older techniques based on the detection of specific regions, such as VNTR (variable-number
tandem repeats), are often able to detect such a mixed infection, this is not always the case with next-
generation sequencing. The main challenge is that the presence of two alternative alleles in a given
genomic position may signal a sequencing error as well as the presence of multiple strains. The key
distinguishing feature of a mixed infection is the consistency of the fraction of the sample attributable
to the sub-dominant strain(s) across most of the variable positions. Thus, depending on the depth of
coverage, the similarity between the constituent strains and the proportions in which they are mixed, the
problem of detecting and separating mixed strains may vary from straightforward to nearly infeasible.

Several methods for this problem have appeared over the past decade. Eyre et al. propose a Mixed
Infection Estimator, a two-step maximum likelihood-based approach for mixture proportion estima-
tion and mixed strain identification using a custom database (built for MLST based sequence types).
Even though the paper presents results for C. difficile, the mixture estimation algorithm can be general-
ized to other pathogens such as M. tuberculosis. In order to differentiate pure and mixed infections the
method computes a deviance statistic and uses it as a threshold for confirming mixed infection. However,
the proposed algorithm can resolve at most two strains and there is no readily available compatible M.
tuberculosis database. More recently, Sobkowiak et al. developed MixInfect, a method for mixed strain
proportion estimation using a Bayesian model-based clustering technique. To distinguish between mixed
and pure samples the tool measures the proportion of heterozygous calls to total SNPs and uses it as a
thresholding value. While the algorithm can estimate mixture proportions it does not provide any func-
tionality for resolving the constituent strains. The most recent method, QuantTB by Anyansi et al, relies
on a specially constructed publicly available database of 2166 M. tuberculosis assemblies gathered from
NCBI. The method provides mixture estimates of WGS samples as well as the identification of strains
whose sequence is similar to at least two strains included in the database. To determine the constituent
strains, the SNPs from a sample are compared against SNP sequences in the reference database. Based
on the presence scores of every genome in the database, the algorithm determines how many constituent
strains are present in a sample. However, such an approach does not generalize well to new data in
situations where the underlying strains are not represented in the database, and thus its performance is
highly dependent on the coverage provided by the database.

In this paper, we address this problem with a tool called SplitStrains, grounded in a rigorous sta-
tistical framework. It is based on formulating, for a given set of WGS reads, two alternative hypotheses,
namely: the reads belong to a single strain (null hypothesis) or to a mixture of two or more strains
(alternative hypothesis). We then use Expectation-Maximization algorithm to estimate the parameters
of both hypotheses, and compare their likelihoods to draw a conclusion. As a result, we simultaneously
obtain

e A call to decide whether the sample represents a simple or a mixed infection,
e A likelihood ratio (between the alternative and the null hypothesis) for the call, and

e If mixed, the proportion of each constituent strain and its identity defined by its SNPs (single-
nucleotide polymorphisms) relative to a reference genome.

Our results on both simulated and real data show that SplitStrains is effective at identifying
mixed infections even at a low depth of coverage (50X) and low genetic distance (100 SNPs) between
strains. Moreover, SplitStrains outperforms previously published tools Mixed infection estimator,
MixInfect and QuantTB. Furthermore, our results show that SplitStrains accurately separates the



constituent strains provided that their proportions are not too close to each other and they are not too
similar.

Methods

Algorithm workflow. For simplicity, a sample obtained via Whole Genome Sequencing will be called
mized if it contains multiple strains of the sequenced organism, and pure otherwise. The splitStrains
algorithm classifies a sample as being mixed or pure. In the case when a sample is mixed, the algorithm
detects the proportion of each strain and separates the reads according to which strain they belong to.
In order to accomplish this, the algorithm proceeds through three stages.

First, SplitStrains uses the sample’s single nucleotide polymorphisms (SNPs) to infer the parameters
of a Gaussian or Binomial Mixture Model, which identifies the number and the proportions of the
constituent simple strains. The likelihood ratio statistic produced in the process provides a rigorous
quantification of the confidence about its status as a pure or mixed sample. The algorithm then uses the
model’s estimated parameters in a Naive Bayes classifier to assign each read to one strain. Finally, it
produces Sequence Alignment/Map files for each constituent strain. The process is shown in Figure 1.
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Figure 1: SplitStrains workflow overview.

Results

Mixed samples detection. We evaluate the performance of the SplitStrains algorithm by measur-
ing its mixture proportion estimation and strain separation accuracy on 3 datasets with known strain
proportions: in vitro artificially mixed samples and 2 in silico artificially generated and mixed samples.
SplitStrains is able to correctly classify 91% of all samples.

Mixture proportion estimation. For each sample that is classified as mixed, we estimate the major
strain proportion and compare it with the true proportion Figure 2. In general, the estimation is accurate
up to a 90% major strain frequency, but starts to decrease as this frequency approaches 95%.
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Figure 2: Proportion estimation. 74 mixed samples with their major proportion estimates.



Assignment of reads to constituent strains. Once the mixture model parameters have been es-
timated, the algorithm assigns each read containing one or more variable sites to a constituent strain
using a Naive Bayes approach. Note that those reads that do not contain any variant sites or have zero
mapping quality remain unassigned (i.e. we perform a partial, rather than complete, strain reconstruc-
tion). In Figure 3 below we respectively present a representative two-strain and three-strain confusion
matrices to show the performance of this assignment.
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Figure 3: Confusion matrices for 2-strain and 3-strain samples. We denote each strain as A, B
and C with the respective proportions displayed above each figure.

Strain genome reconstruction. Using the read assignments to the strains, the algorithm outputs
a new alignment file for each strain. In order to further evaluate the accuracy of the assignment, we
create a consensus sequence from each alignment file. We expect the consensus sequences to match the
respective genomes of the constituent strains. As the genome of each constituent strain has the same
number N of base substitutions relative to the reference genome, due to the way they are generated,
the consensus sequences can have between 0 and N mismatches with the true sequences. In the case of
the two-strain mixtures, our algorithm successfully separates the strains with major strain proportion
varying from 55% to 90%. However, as the major strain proportion gets closer to 50%, correct assignment
of reads becomes steadily more challenging, as shown in Figure 4.
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Figure 4: Assignment error. The proportion of mismatches due to the incorrect assignment of reads,
among the bases where the strains differ from one another.



Comparison with other tools. SplitStrains consistently outperforms MixInfect, QuantTB and
Mixed Infection Estimator.The Receiver Operating Characteristic (ROC) curve (Fig 5) shows the
true positive rate (TPR) against the false positive rate (FPR) at various threshold settings. The Area
Under the Curve (AUC) quantifies how well the algorithm is able to distinguish between pure and
mixed infections. The higher the AUC, the better the algorithm is at predicting the class of a sample.
SplitStrains has the highest AUC (0.99) and can achieve close to 100% TPR with an FPR as low as
11%.

SplitStrains also has a proportion estimation error on each dataset that is consistently the lowest or
second lowest among the tools, and it has the lowest error on the combined dataset. These results are
summarized in Table 1.
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Figure 5: ROC curves for the four tools. SplitStrains achieves a higher area under the ROC curve
than the other methods.

Table 1: Root Mean Squared Error comparison across all datasets.

Dataset | Size | SplitStrains | Mixed Infection Estimator | MixInfect | QuantTB
A 48 0.056 0.068 0.178 0.153
B 60 0.025 0.018 0.031 0.202
C 22 0.066 0.066 0.041 0.312
Combined | 130 0.047 0.053 0.126 0.196

Conclusion In this abstract we introduced a novel algorithm, called SplitStrains, based on a rigorous
statistical framework, for detecting multiple-strain infections, estimating the proportion of the major and
minor strains, and partially reconstructing their sequences by assigning the reads that contain variants
to one of these strains. In addition, SplitStrains is unique among existing methods in its ability to
provide additional information, namely, the assignment of each read to one of the underlying strains,
with a subsequent identification of their sequence if desired. Importantly, unlike QuantTB it does not rely
on the knowledge of a large number of previously identified sequences, which is a clear advantage when
investigating either a novel outbreak or an isolate originating from a data-poor setting. Furthermore,
SplitStrains returns not only a call, but also a likelihood ratio, which is an indicator of the algorithm’s
confidence about the presence or absence of a mixed infection. We believe that, in situations where
such information has either clinical or public health importance, the SplitStrains method will be a
valuable addition to the existing collection of tools. In future work, we plan to extend SplitStrains to
work with other bacterial pathogens as well as to improve its resolution, at least in datasets with high
depth of coverage. Lastly, we plan to use SplitStrains as a preprocessing step in two pipelines - one
for identifying related isolates in an outbreak, where mixed infections can mask such relatedness, and
another one for predicting drug resistance, where mixed infections can impede a correct prediction when
only the minor strain is drug-resistant.



