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1 Introduction

Chromatin in the nucleus is segregated into nuclear compartments (5). These compartments have different functional
properties and these properties drive many cellular processes, including gene regulation and DNA replication. A popular
way to understand genome regulation and compartmentalization is to annotate the genome into several categories
of domains, such that each domain type has similar activity. For example, Rao et al (5) categorize the genome into
subcompartments based on Hi-C data, such that domains having the same pattern of interaction with the rest of the
genome are annotated with same subcompartment.

Because the structure of a genome is correlated with epigenetic properties of chromosomes, both structural assays such
as Chromatin Conformation Capture (3C) or Hi-C (21; 5; 20) and functional genomic assays (19) such as ChIP-seq and
ATAC-seq provide complementary information to find such compartments of a genome. Therefore, integrative analysis
methods are needed that integrate both types of information to produce a comprehensive understanding of chromatin
regulation.

Segmentation and genome annotation (SAGA) methods are widely-used for integrative analysis of multiple data types.
SAGA methods take multiple signal tracks as an input. They segment the genome and output a label for each segment
of a genome such that segments with the same label have a similar pattern of genomics signal tracks (3; 4). While most
SAGA methods can only handle 1D data sets such as ChIP-seq, two SAGA methods, Segway-GBR and SPIN (2; 6) can
incorporate both genomics assays and Hi-C data to infer more accurate domain annotations. Segway-GBR does that
through encouraging bins having high interaction in Hi-C data, to get the same label using graph-based regularization.
SPIN (6) defines a Markov random field that includes edges defined on Hi-C contacts. Both of these methods have an
assumption that bins that have more contact with each other, should get the same functional label.

In this paper, we aim to use recent advances in Graph Neural Networks to incorporate Hi-C data without the specific
assumptions made by previous methods. Graph Neural Networks (GNNs) are able to embed graph structures into a
low-dimensional feature space. We propose an integrative approach for identifying chromatin domains that leverages
GNN methods. We learn latent features for each genome locus through their interaction graph. We concatenate these
structural features with data from 1D ChIP-seq and DNase-seq data sets as input to a SAGA algorithm. The resulting
domain annotations combine both biochemical activities driven from functional genomics assays and the structure of the
genome defined by Hi-C data. These domains form a comprehensive picture of domains in the genome that can be used
to discover new categories of domain activity and elucidate their influence on cellular activity such as gene regulation.
In particular, we show that our inferred domain states show a more accurate explanation for different functional and
structural properties of a genome, including replication timing and distance to nuclear compartments.

2 Method

2.1 Data processing

2.1.1 Hi-C data

We downloaded GM12878 cell line processed Hi-C data with GEO entry 63525 1. Then, observed over expected
(O/E) contact frequency files for every pair of chromosomes were extracted using a Juicer tool (13). SCI (1) uses
interchromosomal interactions to construct a Hi-C graph, but we found out that ignoring intrachromosomal edges
results in a larger similarity of embeddings within a chromosome, which makes it unfeasible to cluster same domain

1https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE63525
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types from different chromosomes together. So, we use both intra and inter chromosomal interactions, however, O/E
values are being computed for each pair of chromosomes separately, and they have different visibility across different
pairs, which also result in dependency of embeddings on chromosome number. Therefore, we do the normalization
on this genome-wide matrix based on mean of its rows, so each entry Oij in matrix is being normalized by Oi ∗Oj

(Oi = meanj(Oij)). Finally, we do hyperbolic arcsine transformation on matrix O. We observe that this preprocessing
allows us to use both intra and inter chromosomal contact frequency information simultaneously to learn embedding for
all bins in the same space.

2.1.2 ChIP-seq data

We downloaded GM12878 cell line (E116) ChIP-seq data sets targeting DNase, H2A.Z and 10 histone modifications
(H3K4me1, H3K4me2, H3K4me3, H3k9ac, H3K9me3, H3K27ac, H3K27me3, H3K36me3, H3K79me2, H4K20me1)
from the Roadmap Epigenomics data portal2. To calculate a signal value for each bin, we get a weighted average of
signal value over that bin.

2.2 Models

In general, our framework has two steps. In the first step, we infer structural features for genome loci from their
3D structure. In the second step, we input such structural features in addition to functional features to the genome
annotation methods. In this section, we first explain a LINE method that we use for graph embedding, and then we
shortly describe genome annotation methods.

2.2.1 Graph Embedding Methods

Graph embedding methods convert graph into a low dimensional space in which the graph information is preserved (22).
We use graph embedding methods to learn latent features for every node of a Hi-C graph to map structural information
in the Hi-C graph to structural features for each segment. Ashoor et al (1) predicts subcompartments by applying LINE
(10) method on interchromosomal Hi-C graph, followed by k-means clustering on learned embeddings. We also use the
LINE method on whole Hi-C graph to learn structural features in this study.

LINE : Large-scale Information Network Embedding (LINE) (10) has been used to map very large networks into
low-dimensional vector space. They learn embeddings for nodes in a graph such that pairwise distances in embedding
space would be representative of the proximity of pair of nodes in a graph. We chose LINE because it is able to address
the embedding problem for large and weighted graphs. LINE can be optimized based on the first-order or second-order
proximity loss function.

First-order proximity is the local pairwise proximity between two nodes. The greater weight between nodes indicates
more proximity between nodes. By optimizing the first-order proximity objective, we encourage nodes with a large
weight between them to get similar embeddings.

On the other hand, second-order proximity is based on the similarity between how two nodes are connected to all
other nodes. For example, if we show first-order proximity of node u with all other nodes with pu = (wu,1, ..., wu,|V |),
second-order proximity of nodes u and v is based on similarity between pu and pv . To model second-order proximity,
they define two vectors corresponding with each node i, one is its embedding (ui), and the other one is its context (u′

i)
that comes from the embedding of its neighbors. Then, they define p2(.|vi) distribution over all nodes, that determine
the probability that the context of each node has been generated using embedding of node i.

p2(vj |vi) =
exp(−→u

′T
j
−→u i)

|V |∑
k=1

exp(−→u ′T
k
−→u i)

To preserve second-order proximity, p2(.|vi) should be close to empirical distribution coming from graph, which they
define as p̂2(vj |vi) = wij

di
, di =

∑
j wij . They minimize weighted sum of distance between p2(.|vi) and p̂2(.|vi) over

all nodes, that weights show importance of node in a graph, which is equal to degree of a node here. They use KL
divergence for measuring closeness of distributions again, and second-order proximity after eliminating constants would
be:

O2 = −
∑

(i,j)∈E

wij log p2(vj |vi)

2https://egg2.wustl.edu/roadmap/data/byFileType/signal/consolidated/macs2signal/foldChange/
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(a)
(b)

Figure 1: Plots of functional genomics assays enrichment based on Segway+LINE annotation (left) and subcompart-
ments (right) (Enrichments have been calculated as ratio of signal mean over bins with a specific label to signal mean
over whole genome)

Previous studies on compartmentalization used bins interaction patterns with the rest of the genome to infer their
labels. This is equivalent to second-order proximity in the LINE method. We tried both 1st and 2nd orders embeddings,
and 2nd order embeddings result in meaningful compartmentalization as expected. So we just use embeddings from
second-order proximity in this study.

2.2.2 Segmentation and genome annotation (SAGA)

Segmentation and genome annotation (SAGA) methods aim to assign a label to each locus in a genome. Each of these
labels could be divided into a few more detailed labels that have different patterns of input signals. Genome annotation
methods use multiple observed signals including different histone modifications, DNase, etc to infer hidden state for
loci over a genome. We use Segway in this study that uses the Dynamic Bayesian Network to model this problem. The
model is described in (4) completely.

3 Results

3.1 Domain types based on 3D features improve stratification of functional and structural properties of a
genome

Earlier studies have shown the correlation between the genome compartmentalization patterns and transcriptional
activities (6; 5). We use learned features from applying LINE on the Hi-C graph as structural features and pass it to
Segway. Annotation result from Segway stratifies functional genomics assays(figure 1a), although we do not use
any functional genomic data as an input to Segway. Segway+LINE labels also represent two active (1: Active1, 3:
Active2) and three inactive (0: Inactive1, 2: Inactive2, 4: Inactive3) domain types. We can see that Segway+LINE
domains represent a better contrast for enrichment within active or inactive domains. For example, Active1 and Active2
domains show more enrichment difference for most of the assays comparing to A1 and A2. This could be the result
of genome-wide annotation of Segway+LINE using both intra and inter chromosomal interaction frequencies data
comparing to subcompartments which are based on part of interchromosomal interactions.

We also expect our domain types to reflect genome structural properties such as spatial positions relative to nuclear
compartments. Chen et al (18) introduces TSA-seq assay that measures chromosome distances to defined nuclear
structures. Using LaminAC TSA-seq data for K562 cell type, we show that our domain types have a different
distribution of distance to LaminAC (figure 2 c), and explain 42% of signal variance, comparing to 41% using known
subcompartments from Rao et al. We conclude that our learned features are a good and sufficient representation for
whole Hi-C matrix.
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Figure 2: (a) Distribution of Silhouette Index grouped by labels from Segway+LINE annotation (left) and subcom-
partment labels from Rao et al (right), (b) Variance explained for different phases of RT based on domain labels from
different inputs to Segway, (c) Distribution of LaminAC TSA seq signal for labels from Segway+LINE method

3.2 Domain types from aggregation of functional assays and 3D features improve representation of
replication timing profile

The replication timing (RT) program of a genome is highly dependent on its 3D structure. Previous studies showed that
the active compartment is replicated earlier than the inactive one; however, the difference between the RT program of
subcompartments has not been observed. We show that our domain types using the Segway+LINE method stratify the
genome according to its replication time better than existing methods. We use Silhouette Index (SI) metric to assess the
goodness of compartmentalization with respect to the RT profile. We use 6 phase RT data and calculate SI indices based
on Rao et al subcompartment and Segway+LINE clusters (figure 2 a). SI values range from -1 to 1, and a value greater
than 0 indicates that the sample is fitting good to its assigned cluster. Subcompartment clusters show good SI for the A1
subcompartment, as it is replicated significantly earlier than other subcompartments; however other subcompartments
do not preserve specific RT patterns. We observe that Segway+LINE labels show better RT profile discrimination not
only for the Active1 domain but also for Inactive1.

We wanted to assess the effect of each of the structural and functional features on defining domain types that respect
the RT program. Therefore, we run Segway using different sets of inputs including just structural features learned
from LINE on Hi-C graph (Segway+LINE), just functional features described in section 2.1.2 (Segway+fa) and their
combination (Segway+LINE+fa). We calculated variance explained for six RT profile phases signals based on domain
types inferred from each of these input types. As expected, structural features can explain RT profile variance better than
functional properties like histone modifications. However, we can see that aggregation of learned structural features
with functional properties results in annotations with improved variance explanation for the RT signals. We also observe
that compartmentalization based on Segway+LINE which just uses Hi-C data as an input like subcompartments from
Rao et al, result in better explanation for RT signals variance (figure 2b).
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