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Abstract

Epigenetic modifications regulate gene expression across different cell types and
understanding the mechanisms by which such gene regulation happens is an impor-
tant question in genomics. Epigenetic data across different cell types can shed light
on some of these mechanisms. Further, by looking at mechanisms that are common
across multiple cell types, it is possible to extract putatively causal mechanisms
via which epigenetic features regulate gene expression. In this work, we design a
permutation-equivariant convolutional neural network to learn a cell-type agnos-
tic mapping between epigenetic markers and gene expression. We then perform
in-silico epigenesis to interpret the regulatory mechanisms learnt by the neural net-
work. Finally, we explore how our network can be used to optimize the epigenetic
features to achieve a desired level of gene expression.

1 Introduction

All cells within a multicellular organism have the same genetic sequence up to a miniscule number
of somatic mutations. Yet, a menagerie of cell types exist with diverse morphologies and functions.
In order to understand how such differences arise and are maintained, a considerable number
of experiments to assay aspects of the epigenome (such as transcription factor binding, histone
modifications, DNA methylation, and chromosome conformation) have been developed. Two large
consortia, ENCODE [1] and the NIH Roadmap Epigenomics Project [2], have either performed an
extensive number of assays in a small number of cell types (ENCODE) or a small number of assays
across many cell types (Roadmap). A key challenge is to understand how these epigenetic markers
modulate gene expression using these datasets.

Recent studies have tried to predict gene expression using combinations of such epigenetic markers
and DNA sequence [3, 4, 5, 6, 7]. DeepChrome [8] attempts to classify gene expression into two
classes (corresponding to high or low gene expression) using a convolutional neural network with
histone modification ChIP-seq data as the input. Since the epigenetic markers can be different across
cell types [9], DeepChrome learns an independent model for each cell type. It has recently been
shown that a relationship exists between invariant representations and causality [10]. We hypothesize
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that the mechanisms via which gene expression is regulated by epigenetic markers that are common
across different cell types, could be putatively causal. A naive way to find them would be to treat each
gene in each cell type as an independent training data point while predicting gene expression from
epigenetic markers. A neural network consisting of only permutation-equivariant layers (as described
in the lower part of Figure 1) would be equivalent to this formulation. Equipping the neural network
with additional permutation-invariant layers would permit the exploration of a more general class
of functions [11]. Since, the resulting neural network, which consists of permutation-equivariant
layers as well as permutation-invariant layers, is itself permutation-equivariant, we refer to it as
a permutation-equivariant convolutional neural network and the resulting architecture is shown in
Figure 1.

In this study, we leverage epigenetic data across different cell types generated by the ENCODE
project, to unravel putative causal regulatory programs [12]. In order to do so, we predict gene
expression values (as opposed to binary classification into high or low gene expression [8]) using six
histone modification markers from twelve different cell types (Table 1).

2 Methods

2.1 Data preparation

We obtained − log10(p-value) ChIP-seq tracks created by running the MACS2 peak-caller [13] on
read count data, from the ENCODE Imputation Challenge [1, 14, 15]. The histone modifications and
cell types used in this study are outlined in Table 1. For three tracks where data were not available,
we downloaded Avocado [16] imputations from the ENCODE data portal [1, 15]. We binned each
epigenetic track at 100bp resolution and pre-processed them with an additional log operation (using
the numpy log1p function [17]) before inputting them into the network.

We downloaded polyA-plus RNA-seq gene expression TPM values for each of the 12 cell types in
Table 1, from the ENCODE data portal [1, 15] and preprocessed them with a log operation (using the
numpy log1p function [17]).

Cell Type H3K36me3 H3K27me3 H3K27ac H3K4me1 H3K4me3 H3K9me3
IMR-90 T T T T T T
H1-hESC T T T T T T
trophoblast cell T T T T T T
neural stem progenitor cell T T T T T T
K562 T T T T T T
heart left ventricle T T T T T T
adrenal gland T A T T T T
endocrine pancreas T T T T T T
peripheral blood mononuclear cell T T T T T T
amnion T T T T T T
myoepithelial cell of mammary gland T T A T T T
chorion T T T T T A

Table 1: ChIP-seq − log10(p-values) were obtained from the ENCODE Imputation Challenge [1,
14, 15] where the ground truth data were available (corresponding to entries labeled T in the table).
Avocado [16] imputations were downloaded from the ENCODE data portal [1, 15], where ground
truth data were not available (corresponding to entries labeled A in the table).

2.2 Permutation-equivariant convolutional neural networks

The network architecture we used in this study is summarized in Figure 1. Since the order of the
cell types in the input tensor is arbitrary, permuting the cell types should lead to the output gene
expression being permuted in the same manner. Such permutation-equivariance can be encoded
into the architecture via a permutation-equivariant layer (bottom of Figure 1, which performs 2D
convolutions with a kernel of height = 1 (along the cell type dimension) and width = 11 (along the
position dimension), with the different epigenetic markers being considered as input channels. The
permutation-invariant layer (top of Figure 1) first performs a similar 2D convolution, followed by
taking the mean across the cell type dimension to enforce invariance along this dimension. We then
tile the resulting tensor along the cell type dimension. The final permutation-equivariant layer’s
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convolution operation is performed on the concatenation (along the epigenetic markers’ dimension)
of feature maps obtained from both the permutation-invariant and permutation-equivariant layers.

Figure 1: Architecture of the permutation-equivariant convolutional neural network. The input
for each gene is a tensor in R12×6×200 corresponding to the 12 cell types, 6 histone modifications and
200 bins at 100bp resolution, corresponding to an input context size of +/− 10Kbp, centered at the
TSS of each gene. Each bin contains the average log(1−log10(p-value)) of the histone modification’s
ChIP-seq peak calls in that 100bp bin. The output of the network is a vector in R12 corresponding to
the log(1+TPM) gene expression values for the 12 cell types.

2.3 Optimizing gene expression

Let f denote our trained neural network that predicts gene expression from epigenetic features. Given
a gene with epigenetic features W0 and a desired expression level vector ydesired, we find epigenetic
features W such that f(W ) ≈ ydesired by optimizing the following objective function via gradient
descent, with W initialized to W0:

min
W
‖f(W )− ydesired‖22 (1)

3 Results

We trained a permutation-equivariant convolutional neural network, as described in Figure 1, on
the genes in the first 12 chromosomes, to predict gene expression using histone modification data
described in Table 1. Figure 2A shows that the model achieves Spearman’s rank correlation ∼ 0.49
and Pearson’s correlation ∼ 0.65, on average, across the twelve different cell types.

Using the trained model as an oracle, we investigated the rules that the network had learnt in order
to predict gene expression, using occlusion experiments similar to those in computer vision [18].
In order to do so, we artificially ablate all peaks from a particular histone modification’s track,
marginally, for a given gene, and then slide a peak of length 1Kb (corresponding to a p-value of
10−20) along the 20Kbp input context, with stride 1Kb. Figure 2B summarizes the output of such a
process for a representative gene using the amnion cell type’s gene expression.
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Figure 2: Results of the permutation-equivariant neural network. (A) The correlation between
the true and predicted gene expression values for held-out chromosomes across different cell types is
shown here. The average pearson correlation across the different cell types is ∼ 0.65 and the average
spearman correlation is ∼ 0.49. (B) in-silico epigenesis: sliding peaks along a background of no
peaks, for each epigenetic feature marginally, leads to different values of predicted gene expression.
(C) W −W0 after optimizing the gene expression of all cell types to increase by 100-fold, for a
randomly chosen gene.

We observe that the H3K36me3 mark, which is known to be present inside gene bodies of actively
expressed genes [19], leads to increase in gene expression when its peak is located within the gene
body. Similarly, H3K27ac, which is also known to be present at the TSS of highly transcribed
genes, increases gene expression when its peak is placed at the TSS. In contrast, we observe that for
H3K27me3 and H3K4me1, a peak near the TSS leads to significant reduction in gene expression, in
concordance with the literature [19].

Finally, using a strategy similar to activation-maximization [20], we use the trained model to optimize
over the inputs for obtaining a desired predicted expression level, as described in Section 2.3.
Figure 2C shows how the network is able to achieve the desired level of gene expression by optimizing
over the input W0 to obtain a new set of epigenetic features W , whose predicted expression matches
the desired gene expression level. In order to increase the gene expression by 100-fold, the network
created peaks at the TSS for H3K27ac and H3K4me3, which are known to promote transcription
[19]. The network has also decreased the presence of H3K9me3 downstream of the TSS. H3K9me3
is known to be present in the gene bodies of low expression genes. Similarly, H3K36me3, which is
present along the coding regions of highly expressed genes, has been added in the region downstream
of the TSS.

4 Discussion

We have proposed a method to learn putatively causal mechanisms by which epigenetic features
regulate gene expression. Consequently, in order to obtain a desired gene expression level, recently
published tools such as Ledidi [21] could be used in conjunction with our proposed optimization
approach to achieve a desired gene expression level by optimizing over sequence inputs.

4



References
[1] ENCODE Project Consortium et al. An integrated encyclopedia of dna elements in the human

genome. Nature, 489(7414):57–74, 2012.

[2] Bradley E Bernstein, John A Stamatoyannopoulos, Joseph F Costello, Bing Ren, Aleksandar
Milosavljevic, Alexander Meissner, Manolis Kellis, Marco A Marra, Arthur L Beaudet, Joseph R
Ecker, et al. The nih roadmap epigenomics mapping consortium. Nature biotechnology,
28(10):1045–1048, 2010.

[3] David R Kelley, Yakir A Reshef, Maxwell Bileschi, David Belanger, Cory Y McLean, and
Jasper Snoek. Sequential regulatory activity prediction across chromosomes with convolutional
neural networks. Genome research, 28(5):739–750, 2018.

[4] Jian Zhou, Chandra L Theesfeld, Kevin Yao, Kathleen M Chen, Aaron K Wong, and Olga G
Troyanskaya. Deep learning sequence-based ab initio prediction of variant effects on expression
and disease risk. Nature genetics, 50(8):1171–1179, 2018.

[5] Vikram Agarwal and Jay Shendure. Predicting mrna abundance directly from genomic sequence
using deep convolutional neural networks. Cell Reports, 31(7):107663, 2020.

[6] Florian Schmidt, Fabian Kern, and Marcel H Schulz. Integrative prediction of gene expression
with chromatin accessibility and conformation data. Epigenetics & chromatin, 13(1):4, 2020.

[7] Wanwen Zeng, Yong Wang, and Rui Jiang. Integrating distal and proximal information to
predict gene expression via a densely connected convolutional neural network. Bioinformatics,
36(2):496–503, 2020.

[8] Ritambhara Singh, Jack Lanchantin, Gabriel Robins, and Yanjun Qi. Deepchrome: deep-
learning for predicting gene expression from histone modifications. Bioinformatics, 32(17):i639–
i648, 2016.

[9] Aaron D Goldberg, C David Allis, and Emily Bernstein. Epigenetics: a landscape takes shape.
Cell, 128(4):635–638, 2007.

[10] Martin Arjovsky, Léon Bottou, Ishaan Gulrajani, and David Lopez-Paz. Invariant risk mini-
mization. arXiv preprint arXiv:1907.02893, 2019.

[11] Jeffrey Chan, Valerio Perrone, Jeffrey Spence, Paul Jenkins, Sara Mathieson, and Yun Song.
A likelihood-free inference framework for population genetic data using exchangeable neural
networks. In Advances in neural information processing systems, pages 8594–8605, 2018.

[12] Hong Yu, Shanshan Zhu, Bing Zhou, Huiling Xue, and Jing-Dong J Han. Inferring causal
relationships among different histone modifications and gene expression. Genome research,
18(8):1314–1324, 2008.

[13] Jianxing Feng, Tao Liu, Bo Qin, Yong Zhang, and Xiaole Shirley Liu. Identifying chip-seq
enrichment using macs. Nature protocols, 7(9):1728–1740, 2012.

[14] https://github.com/ENCODE-DCC/imputation_challenge, 2018.

[15] Ian Dunham, Ewan Birney, Bryan R Lajoie, Amartya Sanyal, Xianjun Dong, Melissa Greven,
Xinying Lin, Jie Wang, Troy W Whitfield, Jiali Zhuang, et al. An integrated encyclopedia of
dna elements in the human genome. Nature, 2012.

[16] Jacob Schreiber, Timothy Durham, Jeffrey Bilmes, and William Stafford Noble. Avocado:
a multi-scale deep tensor factorization method learns a latent representation of the human
epigenome. Genome biology, 21(1):1–18, 2020.

[17] Charles R Harris, K Jarrod Millman, Stéfan J van der Walt, Ralf Gommers, Pauli Virtanen,
David Cournapeau, Eric Wieser, Julian Taylor, Sebastian Berg, Nathaniel J Smith, et al. Array
programming with numpy. Nature, 585(7825):357–362, 2020.

[18] Jason Yosinski, Jeff Clune, Anh Nguyen, Thomas Fuchs, and Hod Lipson. Understanding
neural networks through deep visualization. arXiv preprint arXiv:1506.06579, 2015.

5

https://github.com/ENCODE-DCC/imputation_challenge


[19] Hiroshi Kimura. Histone modifications for human epigenome analysis. Journal of human
genetics, 58(7):439–445, 2013.

[20] Dumitru Erhan, Yoshua Bengio, Aaron Courville, and Pascal Vincent. Visualizing higher-layer
features of a deep network. University of Montreal, 1341(3):1, 2009.

[21] Jacob Schreiber, Yang Young Lu, and William Stafford Noble. Ledidi: Designing genome edits
that induce functional activity. bioRxiv, 2020.

6


	Introduction
	Methods
	Data preparation
	Permutation-equivariant convolutional neural networks
	Optimizing gene expression

	Results
	Discussion

