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1 Introduction
Single-cell measurements provide a fine-grained view of the heterogeneous landscape of cells in a sample,
revealing distinct subpopulations and their developmental and regulatory trajectories. The availability of
measurements capturing various genomic properties, such as gene expression, chromatin accessibility, and
histone modifications, has increased the need for data integration methods for disparate data types. Due to
technical limitations, it is hard to obtain multiple types of measurements from the same cell, so datasets
lack sample correspondence. Furthermore, we cannot a priori identify correspondences between features in
different domains. Accordingly, integrating two or more single-cell data modalities requires methods that
do not rely on either cell-wise or feature-wise correspondences. [1–4].

Two unsupervised manifold alignment algorithms address this challenge in single-cell sequencing: (1)
MMD-MA [5], which is based on the maximum mean discrepancy (MMD) measure, and (2) UnionCom [6],
which performs topological alignment while emphasizing both local and global alignment. Although neither
MMD-MA nor UnionCom requires any correspondence information, they require tuning three and four hy-
perparameters, respectively. Though hyperparameter values significantly affect the quality of the alignment
for both methods, selecting the best hyperparameters is challenging in the completely unsupervised setting.
One usually requires some correspondence information to pick the settings that provide the most accurate
alignment.

We present Single-Cell alignment using Optimal Transport (SCOT), an unsupervised learning algorithm
that employs Gromov-Wasserstein optimal transport to align single-cell multi-omics datasets while preserv-
ing local geometry. We compare the alignment performance of SCOT with MMD-MA and UnionCom
on three simulated and two real-world datasets. We show that SCOT performs on par with state-of-the-art
methods and converges∼10 and∼28 times faster than GPU implementations of MMD-MA and UnionCom,
respectively. Unlike MMD-MA and UnionCom, our algorithm requires tuning only two hyperparameters
and is robust to the choice of one. Moreover, we demonstrate that the Gromov-Wasserstein distance can
guide SCOT’s hyperparameter tuning to align the datasets effectively. As a result, SCOT is the first al-
gorithm to perform single-cell alignment in a completely unsupervised manner. It does not require any
correspondence information to align datasets or select hyperparameters. The source code and scripts for
replicating results are available at https://github.com/rsinghlab/SCOT.

2 Method
SCOT uses the Gromov-Wasserstein based optimal transport, which preserves local neighborhood geometry
when moving data points between domains. This transport problem yields a matrix of probabilities repre-
senting how likely it is that data points from one domain correspond to data points in another domain. These
probabilities can then be used to project the data into the same space for alignment. While optimal transport
has been used for other biological applications [7–10], SCOT is the first algorithm to apply it for single-cell
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sequencing data integration. In this section, we first introduce optimal transport followed by its extension to
Gromov-Wasserstein distance. Finally, we present the details of our SCOT algorithm.

Figure 1: Schematic of SCOT applied to single-cell multi-omics data alignment (alignment of real-world
SNARE-seq dataset is shown here).

We present these methods for two sets of points: X = (x1, x2, . . . , xnx) and Y = (y1, y2, . . . , yny),
from the measure spaces (X , p) and (Y, q), respectively. We define discrete measures p and q over our
data points, representing marginal distributions of X and Y respectively, which we can write as p =∑nx

i=1 piδxi and q =
∑ny

j=1 qjδyj , where δxi is the Dirac measure. We do not require any correspondence
information across the datasets but assume that there is some underlying shared manifold structure.

Optimal Transport The Kantorovich formulation of optimal transport problem seeks a minimal cost cou-
pling between two probability distributions to tie them in a meaningful way [11]. For discrete measures,
the set of possible couplings are the matrices Π(p, q) = {Γ ∈ Rnx×ny

+ : Γ1ny = p, ΓT1nx = q}. Each
row Γi of a coupling Γ tells us how to split the correspondence probabilities of data point xi onto the points
yj for j = 1, . . . , ny, and the condition Γ1ny = p requires that the sum of each row Γi is equal to pi, the
probability of sample xi.

Given discrete measures p and q and a cost matrix C ∈ Rnx×ny where Cij is the cost of transporting
point xi to point yj , the discrete optimal transport problem learns the coupling that optimizes:

min
Γ∈Π(p,q)

〈Γ, C〉. (1)

Intuitively, the cost function represents how many resources it will take to move xi to yj , and the coupling
Γ assigns a probability Γij that xi should be moved to yj for each xi and yj in the two spaces. Although
this problem can be solved with minimum cost flow solvers, it is usually regularized with entropy for more
efficient optimization and empirically better results [12]. Thus, the optimal transport problem that is solved
numerically is

min
Γ∈Π(p,q)

〈Γ, C〉 − εH(Γ), (2)

where ε > 0 and H(Γ) =
∑nx

i=1

∑ny

j=1 Γij log Γij is Shannon entropy. Adding entropy diffuses the optimal
coupling, meaning that correspondence probabilities will be split over more data points. Equation 2 is a
strictly convex optimization problem, and the solution can be obtained efficiently via Sinkhorn’s algorithm
[11].

Gromov-Wasserstein Optimal Transport Classic optimal transport requires defining a cost function di-
rectly on the samples themselves, which can be difficult for data in different dimensions and metric spaces.
Gromov-Wasserstein distance allows for comparing distributions in different metric spaces by comparing
pairwise distances between the samples across these domains, instead of looking at the samples themselves.
For this extension, we need to assume we have metric measure spaces (X , Dx, p) and (Y, Dy, q), where
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Dx and Dy are distance matrices on the two datasets with Dx
ij = dx(xi, xj) and Dy

ij = dy(yi, yj) for some
distances dx and dy [13].

Given a cost function L : R× R→ R, the discrete Gromov-Wasserstein distance between p and q is

GW (p, q) = min
Γ∈Π(p,q)

∑
i,j,k,l

LijklΓijΓkl, (3)

where L ∈ Rnx×nx×ny×ny is the fourth-order tensor defined by Lijkl = L(Dx
ik, D

y
jl). Intuitively,L(Dx

ik, D
y
jl)

captures how transporting xi onto yj and xk onto yl would distort the original distances between xi and xk
and between yj and yl. This change ensures that the optimal transport plan Γ will preserve some local ge-
ometry. For our problem, we use square distance: L(x, y) = 1

2(x − y)2. As in the case of classic optimal
transport, this problem can be solved efficiently through entropic regularization [14]:

min
Γ∈Π(p,q)

∑
i,j,k,l

LijklΓijΓkl − εH(Γ). (4)

Smaller values of ε lead to sparser solutions, meaning that the coupling matrix is more likely to find the
correct one-to-one correspondences when they exist. However, it also means a harder (more non-convex)
optimization problem [15].

Single-Cell alignment using Optimal Transport (SCOT) Our method, SCOT, first computes the pair-
wise distances on our data using graph distances as in [10]. To do this, we construct a k−nearest neighbor
connectivity graph based on the correlation distances within each data set. Then, we calculate the shortest
path distance on the graph between each pair of nodes using Dijkstra’s algorithm and set the distance of any
unconnected nodes to be the maximum (finite) distance in the graph. Our approach is robust to the choice
of k. Following [15], we set p and q to be the uniform distributions on the data points. Then we solve for
the optimal coupling Γ, which minimizes Equation 4.

One of this approach’s major advantages is that we end up with a coupling matrix Γ with a probabilistic
interpretation. The entries of the normalized row piΓi are the probabilities that the fixed data point xi
corresponds to each yj . To use the established correspondence metrics to evaluate the alignment, we need to
project the two datasets into the same space. We use the barycentric projection xi 7→ 1

pi

∑ny

j=1 Γijyj . This
barycentric projection of point xi is a weighted average of the yj’s, where the weight Γij is the probability
of correspondence between xi and yj . Figure 1 presents the schematic of the SCOT algorithm.

Experimental Setup We benchmark our method on three different simulation schemes. They consist
of points with underlying structures of a bifurcated tree (Sim. 1), a Swiss roll (Sim. 2), and a circular
frustum (Sim. 3) that were generated by Liu et al. [5]) and projected to higher dimensions. Next, we
align two real-world single-cell co-assay datasets: (1) sc-GEM [16], which simultaneously profiles gene
expression and DNA methylation at multiple loci on human somatic cell samples undergoing conversion to
induced pluripotent stem cells (iPSCs) and (2) SNARE-seq [17], which links chromatin accessibility with
gene expression data on a mixture of BJ, H1, K562, GM12878 cells. These datasets were pre-processed
according to descriptions in [16] and [17], respectively. Our datasets have varying number of samples, Sim.
1,2,3 consist of 300 samples, sc-GEM has 177 cells, and SNARE-seq contains 1047 cells. All datasets have
1–1 correspondence information, which we use only to evaluate the alignments through the average “fraction
of samples closer than the true match (FOSCTTM)” metric from [5]. We report the average FOSCTTM score
across all the samples for each dataset. We compare the performance of SCOT with UnionCom and MMD-
MA. For SCOT, a grid of hyperparameters is defined over the regularization weight (ε) and the number of
neighbors (k) in the k−NN graph. For baseline methods, we define the grid based on recommendations in
the original papers and their source code and select the set that yields the best performance (minimal average
FOSCTTM).
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3 Results
SCOT provides state-of-the-art alignment results We report the alignment results for SCOT for all
the datasets and compare them with MMD-MA and UnionCom, in Table 1. The qualitative alignment for
SNARE-seq data is shown in Figure 1 as an example. SCOT (first row) gives comparable performance to
MMD-MA and UnionCom for both simulated and real-world datasets. We also observe that the Gromov-
Wasserstein (GW) distance (Equation 3) serves as a proxy for measuring alignment since lower values of
GW distance correspond to lower values of the average FOSCTTM. SCOT (GW), in the second row of
Table 1, reports the alignment scores achieved when we select the hyperparameters corresponding to the
lowest GW distance. While this selection does not always provide the best alignment, it is consistently
close to it. Selecting hyperparameters is particularly challenging in an unsupervised setting. In contrast to
other methods that require some corresponding information to select optimal hyperparameters, SCOT can
use GW distance to pick them effectively without any other information.

Table 1: Alignment performances using average FOSCTTM scores (lower is better).

Sim. 1 Sim. 2 Sim. 3 sc-GEM SNARE-seq
SCOT 0.087 0.021 0.009 0.198 0.150
SCOT (GW) 0.098 0.025 0.010 0.223 0.218
MMD-MA 0.124 0.032 0.012 0.201 0.149
UnionCom 0.083 0.016 0.152 0.210 0.265

SCOT is faster than the state-of-the-art alignment methods We compare the running times of SCOT
with the baseline methods for the best performing hyperparameters. We ran the CPU versions of the algo-
rithms on an Intel i5-8259U CPU (base frequency 2.30GHz) with 16GB memory. For GPU versions, we
used a single NVIDIA GTX 1080ti with VRAM of 11GB. We observe that SCOT converges∼10, and∼28,
times faster than the GPU versions of MMD-MA, and UnionCom, respectively, for the largest SNARE-Seq
dataset (Table 2). Unlike MMD-MA and UnionCom, which require the tuning of three or four parameters,
SCOT requires the tuning of only two and is robust to the choice of one. Therefore, it drastically reduces
the parameter search space making the algorithm a fast tool for unsupervised single-cell alignment tasks.

Table 2: Running times (in seconds) of all the methods averaged over ten runs.

Sim. 1 Sim. 2 Sim. 3 sc-GEM SNARE-seq

CPU
SCOT 3.51 3.47 4.95 3.72 12.22
MMD-MA 30.06 29.69 28.84 16.12 547.71
UnionCom 525.85 442.19 302.69 143.60 2169.74

GPU MMD-MA 79.01 84.13 76.43 90.17 119.28
UnionCom 117.72 112.41 109.73 70.21 345.37

4 Conclusion
SCOT uses Gromov Wasserstein-based optimal transport to perform unsupervised integration of single-cell
multi-omics data. It performs on par with two state-of-the-art methods but in less time and with fewer
hyperparameters, which can be selected in an unsupervised manner. Future work will focus on developing
effective ways to utilize the coupling matrix, closely investigating the cases where SCOT and MMD-MA
outperform each other, and extending our framework to handle more than two alignments at a time.
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