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Abstract

Manifold learning techniques for dynamical systems and time series have been
effective at learning a low-dimensional representation for many applications. How-
ever, they are often insufficient for visualizing the global and local structure of the
data. Here we present DIG1 (Dynamical Information Geometry), a visualization
method for multivariate time series data that extracts an information geometry from
a diffusion framework. We implement a new group of distances in the context
of diffusion operators, which may be useful to reveal structure in the data that
is not accessible by the commonly used diffusion distances. We then apply our
visualization tool to electrical biosignals: EEG data for visualizing sleep stages, as
well as Electromyographic (EMG) data to visualize hand gestures.

1 Introduction

Manifold learning techniques are very effective at studying high dimensional data. The principal
assumption behind manifold learning is that high dimensional data often encapsulate redundant
information. In these cases, the data have an extrinsic dimensionality that is artificially high, while its
intrinsic structure is well-modeled as a low-dimensional manifold plus noise. Following the same
line of reasoning, dynamical systems and time series can be regarded as processes governed by few
underlying parameters, confined in a low-dimensional manifold [2, 3].

For example, electroencephalographic (EEG) measurements can be considered in this analytical
framework. The measurements are taken from different parts of the brain over time, resulting in a
multivariate time series in a high dimensional space. It is known that these time series are highly
correlated with each other, suggesting that there is a low-dimensional representation of the intrinsic
dynamics of the brain that explain a broad spectrum of physical and psychological phenomena such
as sleep stages. Additionally, it can be very useful for researchers to achieve meaningful visual
representations of this phenomena in two or three dimensions to better understand the overall shape
and finer patterns within the data.

We present DIG (dynamical information geometry), a dimensionality reduction tool that is designed
for visualizing the inherent low-dimensional structure present in high-dimensional dynamical pro-
cesses. DIG uses a diffusion framework adapted to dynamical processes, followed by an embedding
of a group of information distances applied to the diffusion operator. This embedding is noise resilient

1DIG was initially presented by the same authors in the 2019 IEEE 29th International Workshop on Machine
Learning for Signal Processing (MLSP). Here we have modified the original paper presenting DIG [1] to fit the
format of this conference in addition to applying DIG to a new dataset. The description of the method in this
paper is largely the same as in [1].



and presents a faithful visualization of the true structure at both local and global scales with respect
to time and the overall structure of the data. We demonstrate DIG on high-dimensional EEG and
Electromyographic (EMG) data.

1.1 Background

Many dimensionality reduction methods have been used for visualization [4, 5, 6, 7, 8, 9, 10].
Principal components analysis (PCA) [9] and t-distributed stochastic neighborhood embedding (t-
SNE) [4] are two of the most commonly used methods for visualization. However, these and other
methods are inadequate in many applications as they tend to favor one aspect of the data at the expense
of the other. For example, PCA typically shows the large scale global structure of the data while
neglecting the finer, local structure in the first two or three dimensions. In contrast, t-SNE focuses on
the local structure and often distorts the global structure, potentially leading to misinterpretations [11].
Both methods also fail to denoise the data for visualization.

Diffusion maps (DM) is a popular nonlinear dimensionality reduction technique that effectively
denoises the data while capturing both local and global structure [12]. DM has been extended to
dynamical systems previously [13, 14, 15, 16]. In particular, Talmon and Coifman [14, 15] introduced
an approach called empirical intrinsic geometry (EIG) that builds a diffusion geometry using a noise
resilient distance, resulting in a noise-free embedding that captures the true structure of the underlying
process. However, DM and its extensions like EIG are not optimized for visualization as the learned
structure of the data is encoded in higher dimensions. Recently, PHATE was introduced in [17]
that uses an information distance to present the information learned in DM in low dimensions for
visualization. In this work, we introduce a new visualization method DIG that is well-suited for
visualizing high-dimensional dynamical processes by preserving an information distance between
the diffusion probabilities constructed from a noise resilient distance. This results in a visualization
method that represents the true structure of the underlying dynamical process.

EEG signals have been embedded in low dimensional representations for detecting emotional states
[18], pre-seizure states [3, 19] and sleep dynamics [16]. In the latter DM was implemented using
several approaches to learn the distances. EIG was also applied to data including both respiratory and
EEG signals [20]. Manifold learning methods for EMG have been employed to leverage classification
accuracy in weight-lifting data [21]. The study via manifold learning of other biomedical signals
such as ECG, can be found in [22, 23].

2 The DIG Algorithm

Here we extend principles of EIG and PHATE to dynamical systems to derive DIG. In this context,
we present a family of information distances and derive some of their properties.

2.1 Diffusion with Dynamical Systems

To learn the local structure of dynamical systems we construct a matrix that encodes the local
distances between data points. These local distances can be taken as an input in the PHATE algorithm
to build a diffusion operator, from which information is extracted for visualization. To do this, we
build upon the EIG framework [15, 14] which uses a state-space formalism (1)-(2):

zt = yt(θt) + ξt (1)

dθit = ai(θit)dt+ dwit, i = 1, . . . , d. (2)

The multivariate time series zt represents the observed time series data while θt represents the hidden
(unobserved) states that drive the process. zt can be viewed as a corrupted version of a clean process
yt that is driven by the hidden states, where the corruption ξt is a stationary process independent
of yt. In general, we can view yt as being drawn from a conditional pdf p(y|θ). In the stochastic
process (2), the unknown drift functions ai are independent from θj , j 6= i. Therefore, we assume
local independence between θit and θjt , ∀i 6= j. The variables wit are Brownian motions.

The pdf p(z|θ) is a linear transformation of p(y|θ) [15, 14]. Since the pdfs are unknown, we use
histograms as their estimators. Each histogram ht = (h1t , . . . , h

Nb
t ) has Nb bins, and is built with the

observations within a time window of length L1, centered at zt. The expected value of the histograms,
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e.g. E(hjt ), is a linear transformation of p(z|θ). Since the Mahalanobis distance is invariant under
linear transformations, the following distance in the histograms space thus is noise resilient [14]:
d2(zt, zs) = (E(ht)−E(hs))T (Ct+Cs)−1(E(ht)−E(hs)), where Ct and Cs are the covariance
matrices in the histograms space, in a time window of length L2, centered at ht and hs, respectively.
Under certain assumptions, d(zt, zs) is a good approximation of the distance between the underlying
state variables [14]: ‖θt − θs‖2 ≈ d2(zt, zs).
To learn the global relationships from the local information encoded by the Mahalanobis distances,
we first apply the α-decay kernel from PHATE to construct affinities. The diffusion operator P is
constructed by row-normalizing the resulting kernel matrix and global relationships are learned via
the diffusion process.

2.2 Embedding Information Distances

Information is often extracted from the diffusion operator P by either eigendecomposition or by
directly embedding the diffusion distances (e.g. via MDS). However, the former typically fails to
provide a low-dimensional representation that is sufficient for visualization while the latter can result
in unstable embeddings in some cases [17]. To overcome this, DIG extracts the information from
the diffusion operator by embedding an information distance instead. We focus on a broad family of
information distances that are parametrized by γ:

Dγt (zi,zj)
2 =


∑N
m=1

(log[P t]mi−log[P t]mj)2

φ0(m) , γ=1∑N
m=1

([P t]mi−[P t]mj)
2

φ0(m) , γ=−1∑N
m=1

2(([P t]mi)
1−γ
2 −([P t]mj)

1−γ
2 )2

(1−γ)φ0(m) , −1<γ<1.

(3)

The parameter γ controls the level of influence of the lower differences among probabilities in the
overall distance. For example, the standard diffusion distances (γ = −1) are highly influenced by the
highest absolute differences among probabilities. In contrast, the potential distances (γ = 1), which
were used in PHATE, account for the relative differences between them. Thus the standard diffusion
distances and the potential distances can be viewed as two extremes of a general class of distances
over the diffusion geometry.

Algorithm 1 The DIG algorithm
Input: Data matrix X , neighborhood size k, locality scale α, time windows length L1 and L2, number of bins

Nb, information parameter γ, desired embedding dimension m (usually 2 or 3 for visualization)
Output: The DIG embedding Ym

1: D ← compute pairwise distance matrix from X using the Mahalanobis distances in the histograms space
2: Kk,α ← compute local affinity matrix from D and σk
3: P ← normalize Kk,α to form a Markov transition matrix (diffusion operator)
4: t← compute time scale via Von Neumann Entropy [17]
5: Diffuse P for t time steps to obtain P t

6: Dγ
t ← compute the information distance matrix in eq. 3 from P t for the given γ

7: Y ′ ← apply classical MDS to Dγ
t

8: Ym ← apply metric MDS to Dγ
t with Y ′ as an initialization

For γ ∈ [−1, 1], the distance Dγ
t forms an M-divergence [24, 25]. Furthermore, when γ = 0, Dγ

t
becomes proportional to the Hellinger distance, which is an f -divergence [26, 27]. f -divergences
are directly related to the Fisher information and thus are well-suited for building an information
geometry [28]. Therefore, f -divergences may be desirable for embedding the diffused probabilities.

We also consider another information distance based on f -divergences that has not been applied
previously to diffusion operators. Since the rows of the diffusion matrix P are multinomial distri-
butions, we can compute the geodesic distance between them using the Fisher information as the
Riemannian metric [29]. This is an extension of the KL divergence or the Hellinger distance, both
f -divergences, for distributions far apart from each other. These distances are defined as [30, 31]:
D(zi, zj) = 2cos−1

(∑N
m=1

√
[P t]mi[P t]mj

)
.

After the information distances have been obtained, DIG applies metric MDS to the information
distances to obtain a low-dimensional representation. See Algorithm 1 for pseudocode summarizing
DIG.
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3 Experimental results

We now demonstrate DIG on two datasets. Figure 1 shows the results for EEG data from [32, 33].
The original data is sampled at 512Hz and labeled for every 30 second interval, within six sleep
categories according to R&K rules (REM, Awake, S-1, S-2, S-3, S-4). Due to the lack of observations
in some stages, we group S-1 with S-2, and S-3 with S-4. We band-filtered the data between 8-40 Hz,
and down-sampled it to 128Hz. In Figure 2 we present DIG applied to EMG data labeled by hand
gestures [34].

DM � = 0 PHATE

C) Time steps

Geodesic Distances� = -1

B)

DM � = -1 � = 0 � = PHATE Geodesic Distances

 A)

Figure 1: Impact of γ on the visualizations of EEG data from [32, 33]. (A) Embeddings using different values
of γ colored by sleep stages. The DM embedding is obtained by the eigendecomposition of P t, while the
γ = −1 uses diffusion distances embedded with MDS. (B) For comparison, we also use an alternative distance
to the Mahalanobis distance in the histogram space. Assuming that the data within time windows of length L1

centered at zt follows a multivariate Gaussian distribution N (µ,Σt), we can compute the geodesic distance
between different time windows of data using the Fisher information as the Riemannian metric [31] as follows:
d2(zt,zs) = 1

2

∑N
i=1 ln(λi),, where λi are the roots of, |Σt − λΣs| = 0. The diffusion operator can then

be obtained using this distance as input to the α-decay kernel. Note that the embedding is noisier using this
distance, suggesting the Mahalanobis distance is effective at denoising. (C) Embeddings using the two histogram
distances colored by time progression. The top embedding shows clearly how the subject alternates between
different sleep stages.

γ = -0.95 γ = -0.5 γ = 0 γ = 0.5 γ = 1 (PHATE)

A)

B)

C)

Figure 2: Embeddings of EMG data colored by hand gestures for different values of γ. (A) Time windows
L1 = 100 and L2 = 5. DIG achieves a good separation among hand gestures. γ = 1 seems the best for
distinguishing classes. (B) Time windows L1 = 40 and L2 = 5. A lower L1 allows for a greater number of
observations, but typically presents a noisier embedding. (C) Time windows L1 = 100 and L2 = 10. The
global structure of the process is better captured in this embedding, where the progression of the unmarked data
shows how the subject goes from the hand at rest to the given hand gesture, and then back to the resting position.

The experiments show how DIG is capable of discovering the underlying trajectories of the process,
as well as separate different states. We also note that modifying the time window lengths provides
different resolutions. For instance, the embeddings in Figure 2(B) give more insight into the local
structure, while the global structure of the data is more evident in the embeddings in Figure 2(C).
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