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Abstract

The specific growth of bacteria in immune-deficient necrotic tumor
cores, coupled with advancements in engineering living cells, makes bac-
teria an attractive cancer therapy. However, precise understanding of
spatial-temporal colonization and interaction between bacteria and tu-
mors is not well understood. The focus of this work thus lies in com-
putationally inferring underlying population distributions of bacteria and
cancer cells, and curating an interpretative state-space model which infers
global and local parameters for the competitive dynamics involved in such
a system.

1 Introduction

A recent and novel utilization of microbiome research is development of engi-
neered bacteria as therapy for cancer9;17. This approach relies on engineering
bacteria with desired functions to grow in necrotic tumor cores and recombi-
nantly produce anti-cancer payload2;34;43;21;22.

Microbiome dynamics has been successfully modeled based on competi-
tive/cooperative bacterial interactions using the Lotka-Volterra formulation10;30;6;7;38;41,
and its stochastic and spatial extensions3;32;11;23;20;10;30;6;7;38;41. Spatial ecol-
ogy, on the other hand, often relies on point estimates. In particular, Ripley’s
K function formalizes local density13;19;12;25;31 with diverse applications33;39;29

and extensions16;14.
Deep Neural Networks (DNNs) emerged as transformative across application

domains36;1;8;26;37. DNNs are able to effectively learn non-linear mappings be-
tween predictors & targets through parameter optimization. State-space models
have recently come in the limelight due to their interpretative temporal structure
& ability to incorporate known statistical prior’s during model formulation &
inference4.Such state-space models when integrated with DNNs result in better
parametric model formulation28;42;35;24.

In this paper we devise a deep state state-space simulation framework which
can effectively learn both global & local parameters that govern underlying
system dynamics (stochastic Lotka Volterra) from images of GFP expressing
bacteria invading artificially created tumor micro-environments.
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2 Methods

2.1 Data Analysis & Spatial Point Interactions

Input to our models are videos22 of GFP expressing bacteria invading a multi-
cellular spheroid environment. The videos capture the proliferation & coloniza-
tion of bacteria within these spheroids, where over time necrotic tumor cores
are observed. We extract individual frames from these videos (Fig 1.) with
dimensions of 2048× 2048 (light blue:bacteria & dark blue:necrotic tumor core)
which are subsequently used to study global system dynamics using the state
space model described in the following section.

Figure 1: Top:Original Images, Bottom:Polar Images [(x, y) = (θ, r)]

Thereafter we depict dynamics of each point interaction in this system with
Ripley’s K function estimated using the radius dimension of polar images.

Lastly we learn an effective parameterization of the underlying data distribu-
tion in the polar space. This is achieved through a Mixture Density-RNN40;15,
which learns the parameters for a family of individual distributions (two Gaus-
sian’s in our case) using the log likelihood of the input. This description encour-
ages learning a robust model which can handle temporally abrupt distribution
changes via a mixture term which quantifies the proportion of each individual
distribution. We also ensure the mean of each Gaussian is positive using the
LogSoftmax activation, since no negative values are seen in our data.

2.2 State Space Model

We use the Hidden Markov formulation (Fig 2) to characterize the suspected
Lotka-Volterra dynamics by a chain of latent random variables zt derived from
noisy image sequences xt. Our framework can mathematically be visualized
through Eqn 1.

p(x, z) =

168∏
i=0

pθ(xi|zi).p(zi) (1)
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Figure 2: Graphical Model Architecture

We encode our observa-
tions into a lower dimen-
sional (256) latent space via
a Convolutional Variational
Auto-Encoder27, thus cap-
turing relevant spatial fea-
tures while restricting our la-
tent space via known priors.
Subsequently, a well studied
Variational Inference mechanism4;5 is adopted to jointly learn model parame-
ters & underlying data distributions as shown in Eqn 2, 3 (Generative Model)
& Eqn 4 (Inference Model). Additionally, multiple experiments are performed
to test the efficacy of varied transition networks in the latent space.

p(zi+1|zi) = N(µφ(zi), Σ2
φ) (2) p(xt) ∼ N(µψ(zi), Σ2

ψ) (3)

p(zi|xi) = N(µθ, Σ2
θ ) (4)

3 Results

a) Data Analysis & Point Interactions: We train our Mixture Density RNN
over 15 epochs (Fig 3a) with a batch size of 16 for our LSTM cell. We test our
model by checking the log-likelihood of flattened test images using the learnt
distribution parameters. It can be seen the model is able to accurately represent
images with both single & bi-modal peaks (Fig 3b).

(a) MD-RNN Training (b) Testing Flattened Images

Figure 3: Mixture Density - RNN.

Next, we estimate the uni-variate K function, conditioned on the maximum
radius value using the MCMC estimation. As shown in Fig 4, due to limited
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point events in early time steps, a stable & small K value is recorded. There-
after, during the competitive phase, a linear trend in local point interactions is
noted (time step 30 to 95). Ultimately a saturated K value is observed, once
colonization & necrotic growth is complete. We hence conclude these findings
to be consistent with our approximated competition equations.

Figure 4: K function

b) State-Space Model: We
train our state-space model
for 25 epochs & test every
5 epochs by reconstructing 3
random images from our test
set as shown in each column
of Fig 5. We vary our network
with linear, LSTM and con-
volutional transitions in the
latent space and note similar
performance between the lin-
ear and convolutional system.

We conclude our linear
& convolutional model show
similar performance in accordance with the linear approximation of our Lotka
Volterra formulation.

Figure 5: Top Row: Train, Bottom Row: Each row represents 3 images from
test set - Original vs Reconstructed respectively
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