4 Preliminary

The Lotka-Volterra model describes a deterministic competition system ${ }^{3}$ between prey \& predator populations denoted by $N_{1}(t) \& N_{2}(t)$ respectively where $a, b, c, g>0$.

$$
\begin{align*}
& \frac{d\left(\mathbf{N}_{1}(t)\right)}{d t}=-\mathbf{c} N_{1}(t)+\mathbf{g N}_{1}(t) \mathbf{N}_{2}(t) \tag{5}\\
& \frac{d\left(\mathbf{N}_{2}(t)\right)}{\mathrm{dt}}=\mathbf{a N} \mathbf{N}_{2}(t)-\mathbf{b N} \mathbf{N}_{1}(t) \mathbf{N}_{2}(t) \tag{6}
\end{align*}
$$

We look at a spatial adaptation of such a model where the range of interaction between these two populations is restricted ${ }^{7}$. The formulation in Eqn 7 \& Eqn 8 is consistent with that of ${ }^{7}$ where $\bar{x}, D_{N_{i}}$ represents the spatial location (x, y) \& the diffusion coefficient of preys,predators respectively. Further, prey's grow with a rate $r \&$ are consumed by predators at a rate of α. Predators on the other hand die at a rate of m, \& reproduce at the rate β. The spatial range between these two populations R_{i} affects their interaction terms.

$$
\begin{align*}
& \frac{\partial \mathbf{N}_{\mathbf{1}}(\overline{\mathbf{x}}, \mathbf{t})}{\partial \mathbf{t}}=\mathbf{D}_{\mathbf{N}_{1}} \frac{\partial^{2} \mathbf{N}_{\mathbf{1}}(\overline{\mathbf{x}}, \mathbf{t})}{\partial \mathbf{t}^{2}}+\mathbf{r} \mathbf{N}_{\mathbf{1}}(\overline{\mathbf{x}}, \mathbf{t})-\alpha \mathbf{N}_{\mathbf{1}}(\overline{\mathbf{x}}, \mathbf{t}) \int_{\left|\overline{\mathbf{x}}^{\prime}-\overline{\mathbf{x}}\right|<\mathbf{R}_{1}} \mathbf{N}_{\mathbf{2}}\left(\overline{\mathbf{x}}^{\prime}, \mathbf{t}\right) \mathbf{d} \overline{\mathbf{x}}^{\prime} \\
& \frac{\partial \mathbf{N}_{\mathbf{2}}(\overline{\mathbf{x}}, \mathbf{t})}{\partial \mathbf{t}}=\mathbf{D}_{\mathbf{N}_{2}} \frac{\partial^{2} \mathbf{N}_{\mathbf{2}}(\overline{\mathbf{x}}, \mathbf{t})}{\partial \mathbf{t}^{2}}-\mathbf{m} \mathbf{N}_{\mathbf{2}}(\overline{\mathbf{x}}, \mathbf{t})+\beta \mathbf{N}_{\mathbf{2}}(\overline{\mathbf{x}}, \mathbf{t}) \int_{\left|\overline{\mathbf{x}}^{\prime}-\overline{\mathbf{x}}\right|<\mathbf{R}_{\mathbf{2}}} \mathbf{N}_{\mathbf{1}}\left(\overline{\mathbf{x}}^{\prime}, \mathbf{t}\right) \mathbf{d} \overline{\mathbf{x}}^{\prime} \tag{7}
\end{align*}
$$

We simplify the limiting interaction integral based on the series solution to the probability of a point (x, y) lying within a circle of radius R, where the coordinates are distributed according to a bivariate normal by a multiple of the Incomplete Gamma Function where $z_{i}=\frac{R_{i}}{\sigma_{x}}$. Further, we assume $\sigma_{x}=\sigma_{y}=\sigma$, allowing us to approximate the Incomplete Gamma function ${ }^{18}$.

Subsequently we adapt this model to derive it's stochastic counterpart by including independent Brownian motion terms $\omega_{1}(t) \& \omega_{2}(t)^{3 ; 11}$ to obtain Eqn 9 \& Eqn 10.

$$
\begin{equation*}
\frac{\partial \mathbf{N}_{1}(\overline{\mathbf{x}}, \mathbf{t})}{\partial \mathbf{t}}=\mathbf{D}_{\mathbf{N}_{1}} \frac{\partial^{2} \mathbf{N}_{\mathbf{1}}(\overline{\mathbf{x}}, \mathbf{t})}{\partial \mathbf{t}^{2}}+\mathbf{r} \mathbf{N}_{1}(\overline{\mathbf{x}}, \mathbf{t})-\alpha \mathbf{N}_{\mathbf{1}}(\overline{\mathbf{x}}, \mathbf{t}) \mathbf{z}_{2} \mathbf{e}^{\frac{-1}{2\left(\mathbf{b}^{2}+\mathbf{z}_{2}^{2}\right)}} \mathbf{I}_{\mathbf{0}}\left(\mathbf{b} \mathbf{z}_{2}\right)+\mathbf{G}_{1} \mathbf{N}_{\mathbf{1}}(\overline{\mathbf{x}}, \mathbf{t}) \omega_{1}(\mathbf{t}) \tag{9}
\end{equation*}
$$

$\frac{\partial \mathbf{N}_{\mathbf{2}}(\overline{\mathbf{x}}, \mathbf{t})}{\partial \mathbf{t}}=\mathbf{D}_{\mathbf{N}_{\mathbf{2}}} \frac{\partial^{\mathbf{2}} \mathbf{N}_{\mathbf{2}}(\overline{\mathbf{x}}, \mathbf{t})}{\partial \mathbf{t}^{2}}-\mathbf{m N}_{\mathbf{2}}(\overline{\mathbf{x}}, \mathbf{t})+\beta \mathbf{N}_{\mathbf{2}}(\overline{\mathbf{x}}, \mathbf{t}) \mathbf{z}_{\mathbf{1}} \mathbf{e}^{\frac{-1}{2\left(\mathbf{b}^{2}+\mathbf{z}_{1}^{2}\right)}} \mathbf{I}_{\mathbf{0}}\left(\mathbf{b} \mathbf{z}_{\mathbf{1}}\right)+\mathbf{G}_{\mathbf{2}} \mathbf{N}_{\mathbf{2}}(\overline{\mathbf{x}}, \mathbf{t}) \omega_{\mathbf{2}}(\mathbf{t})$
where:
$z_{i} \geq 0$
$I_{0}=$ Modified Bessel function of the First Kind \& Zero order
$b=\sqrt{\frac{\mu_{x}^{2}}{\sigma_{x}^{2}}+\frac{\mu_{y}^{2}}{\sigma_{y}^{2}}}$
We hence obtain a spatial extension to the typical stochastic formulation shown in 3, where a linear estimation of the same is derived \& thus conclude our competition system can be modelled using a linear system of equations.

