4 Preliminary

The Lotka-Volterra model describes a deterministic competition system? be-
tween prey & predator populations denoted by Ny (t) & Na(t) respectively where
a,b,c,g > 0.
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We look at a spatial adaptation of such a model where the range of interaction
between these two populations is restricted”. The formulation in Eqn 7 & Eqn 8
is consistent with that of” where Z, Dy, represents the spatial location (z,y)
& the diffusion coefficient of preys,predators respectively. Further, prey’s grow
with a rate r & are consumed by predators at a rate of a. Predators on the
other hand die at a rate of m, & reproduce at the rate 5. The spatial range
between these two populations R; affects their interaction terms.
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We simplify the limiting interaction integral based on the series solution to
the probability of a point (z,y) lying within a circle of radius R, where the
coordinates are distributed according to a bivariate normal by a multiple of the

Incomplete Gamma Function where z; = ? Further, we assume o, = 0y = 0,
x

allowing us to approximate the Incomplete Gamma function 8.

Subsequently we adapt this model to derive it’s stochastic counterpart by
including independent Brownian motion terms w1 (t) & wa(t) 31! to obtain Eqn 9
& Eqn 10.
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where :

Iy = Modified Bessel function of the First Kind & Zero order
b= B3 1
=\ AT
We hence obtain a spatial extension to the typical stochastic formulation shown

in3, where a linear estimation of the same is derived & thus conclude our com-
petition system can be modelled using a linear system of equations.



