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Introduction: 
Convolutional neural networks (CNNs) and hybrid architectures with recurrent neural networks (RNNs) are highly              
effective deep learning tools in genomics. They have successfully been applied to predict transcription factor               
binding sites (TFBSs) 1–4, chromatin accessibility 5,6, and the functional impact of non-coding variants 3,7.  
Deep learning methods have increased predictive accuracy however they lack interpretability. There are two              
main approaches currently used to tackle the problem of poor interpretability for deep neural networks: attribution                
based and visualisation of filters. Attribution based approaches quantify the importance of individual base pairs               
for each input sequence 8. The importance scores are clustered into motifs which can be compared with binding                  
motifs of known transcription factors (TFs) to gain insights into the biological interplay behind the task at hand 9,10.                   
Unfortunately, these approaches do not quantify importance on a global level 11,12 and can sometimes fail to                 
provide reliable importance scores 13,14. The second approach to interpretability involves visualising filters/kernels             
in the first layer of the convolutional network as position weight matrices(PWMs). This is achieved by aligning the                  
sequences activated by those filters 5,6. However, the efficacy of these approaches is dependent on architecture                
choices 15. In order to gain interpretability at a global level, filters must be nullified sequentially, which is both                   
computationally intensive and dependent on arbitrary thresholds. Furthermore, these approaches may miss out             
on the importance of features assembled in the later convolutional layers. 
Recently, Agarwal et al. proposed Neural Additive models (NAMs)16 as an interpretable alternative to feedforward               
neural networks. NAMs are a form of generalised linear model, where the prediction is computed as a linear                  
combination of multiple feedforward neural network outputs, each of which is attended by a particular input                
(Figure 1A). 
Mathematically: 
 

(ω (x ))Υ = ∑ i × f i i + β  
Where  is the neural network associated with input .f i xi   
NAMs have been shown to have similar performance to feedforward neural networks and gradient boosted trees                
for tabular input data. 
In this paper, we present Convolutional Additive Models (CAMs). CAMs are a modification to NAMs optimised for                 
genomics tasks trained on one-hot encoded sequences. The prediction is computed as a linear combination of                
outputs from multiple independent CNNs, each of which consists of a single kernel and two fully connected layers                  
(Figure 1C). We argue that if we are able to assign a biological interpretation to each of these convolutional units                    
(for example, by comparing the filter activations with known TF motifs), we will obtain a global view of how                   
predictions are being made for the task at hand by visualizing the weights of the output layer; thereby overcoming                   
the limitations of the existing interpretation methods. We demonstrate that CAMs achieve a performance              
comparable to that of Multi-layer CNNs in predicting TF binding from DNA sequence data. We use Genetic                 
Algorithm (GA) 17 to generate artificial sequences that maximise each independent CNN unit to overcome the                
limitations associated with filter to PWM conversion. Further, by combining the output layer weights with the                
motifs learned by each independent CNN unit, we recovered patterns of cooperativity between TFs. Lastly, we                
trained CAMs to predict chromatin accessibility in 81 immune cell types in mouse using DNA sequence data and                  
recovered the role of known TFs and their cooperative action in driving lineage specification. We show that CAMs                  
provide an easy to use, fully interpretable approach to deep learning in genomics without sacrificing accuracy. 

 
Figure 1 Model architectures used in this study  
A. Neural Additive Model. Each input xi is fed into its 
corresponding fully-connected neural network fi. The final output 
is computed as a sum of outputs from each fully-connected 
network. 
B. The CNN architecture used in this work as a baseline is 
inspired by Basset and AI-TAC. Specifically, three convolutional 
layers, each followed by batch normalization, ReLU activation 
function, and max pooling, followed by two fully-connected 
layers and one output layer.  
C. The architecture of the proposed Convolutional Additive 
Model (CAM). Input sequences are operated on by independent 
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CNNs, each of which consists of one convolutional filter of length 20, followed by batch normalization (BN), ReLU activation (R), max pooling 
(MP), and two fully-connected layers of 100 and 1 neuron(s) respectively. The final output is computed as the weighted sum of outputs from each 
independent CNN unit. These weights (purple rectangle) can be visualized to provide global interpretability of the model. 
 

Results 
CAMs accurately predict TF binding 
As proof of concept, we implemented a CAM with 10 independent CNN units to predict the binding to DNA of                    
CTCF, JUND, and FOXA1. To facilitate model interpretation, we applied the ReLU activation function after each                
independent CNN unit and restricted the weights from the final layer to be non-negative. As a baseline                 
comparison, we trained a multilayer CNN-based model following specifications from 5 and 6, as shown in Figure                 
1B. Both models were trained on a custom dataset combining TF binding data from ReMap 201818 and UniBind19                  
with ENCODE DNase I hypersensitive sites 20,21 in a cell and tissue type agnostic manner, as described here31.                  
Overall, the CAM and baseline models achieved comparable performance levels (Figure 2A). We observed that               
the CAM performance improved with the number of CNN units used (Figure 2B). However, the training time also                  
increased linearly with the number of CNN units (Figure 2C). 
To interpret each independent CNN unit, we converted the convolutional filters of the first layer to PWMs and                  
compared them to TF DNA-binding profiles from the JASPAR database 22 using Tomtom 23, as described in 5. As                   
expected, most filter PWMs had significant similarities to the profiles of CTCF, JUND or FOXA1 (Figure 2D; left).                  
Next, we visualised the weights from the final layer of the CAM to highlight the contribution of each independent                   
CNN unit (and thereby its corresponding TF motif) to the prediction of CTCF, JUND and FOXA1 (Figure 2D;                  
right). This provides a global picture of how predictions are made for each output without performing the                 
computationally intensive exercise of iteratively nullifying each filter. To achieve interpretability at the level of               
individual sequences (hereafter referred to as local interpretability), we visualised the weighted outputs from each               
independent CNN unit (Figure 2E). This provides an understanding of how predictions are made for each                
sequence while highlighting which features are important. 
A potential solution to overcome the increasing training time is the use of larger batch sizes. This however could                   
lead to a decrease in accuracy and is a subject of further study.  
Overall, we demonstrate that CAM approach achieves global and local interpretability without compromising             
predictive accuracy. 

 
Figure 2. CAMs achieve global and local interpretability without comprising on 
accuracy 
A. Performance of the CAM model on TF binding prediction task. Confusion 
matrix and Precision Recall/Receiver Operating Characteristics curve for 
CTCF, JUND and FOXA1. AUROC/AUPRC for the baseline CNN model are 
shown in bold for comparison. 
B. CAM achieves similar performance (measured by Matthews Correlation 
Coefficient) to the baseline model as the number of CNNs increases.  
C. Time required for training a CAM scales linearly with the number of 
independent CNN units. Constraints denote non-negative weight restrictions in 
the final layer. 
D. Global interpretability with CAM. On the left: filters from independent CNN 
units correspond to binding motifs of CTCF, JUND and FOXA1, except filter 
one. 
On the right: visualisation of final layer weights of CAM highlights the 
importance of different CNN units for prediction of each TF. 
E. Local Interpretability with CAM. 
On the left: True labels for a selected set of sequences. 
In the middle: Weighted output from each CNN unit for the selected set of 
sequences. On the right: CAM prediction computed by sigmoid operation on 
sum of weighted outputs from each CNN unit. 
 
 
 
 
 

Artificial sequences generated using Genetic Algorithms provide an alternative to  filter-PWM 
conversion 
As shown in the section above, not all filter PWMs corresponded to a known TF motif. For instance, filter one in                     
Figure 2A did not match any JASPAR profile, but it was important for the prediction of CTCF binding. On the                    
other hand, filter eight in Figure 2A resembled the motif of CTCF, yet it was not necessary for its prediction. We                     
hypothesized that since each CAM filter was followed by two fully-connected layers, focusing only on the motifs                 
activated by the filter might not be enough to visualize the important features learnt by the CNN unit. 
To overcome these limitations, we implemented a genetic algorithm (GA) to generate artificial sequences that               
maximise the output of each CNN unit (Figure 3A). Briefly, each CNN unit was treated as an oracle to evaluate                    
the "fitness" of a population of sequences. Next, sequences with the highest fitness underwent crossover and                
mutations, resulting in the next population of sequences. This was repeated until the average fitness of the                 
population of sequences converged. Then, we compared the ratio of known TF motif occurrences between this                
set of sequences and random sequences. Using this approach, we generated artificial sequences for units one                
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and eight. Sequences optimized for unit one were enriched for C2H2 zinc finger TFs such as PLAG1, ZNF263,                  
and RREB1 (Figure 3C), explaining the importance of this unit for the prediction of CTCF binding, which is also a                    
C2H2 zinc finger. 
However, the sequences optimized for unit eight did not show significant enrichment for any TF motif. We                 
hypothesised that this unit might detect the absence of CTCF by yielding a low output when a sequence                  
contained a CTCF motif. In turn, this would help predict the binding of FOXA1 and JUND, as suggested by the                    
importance of unit eight to the prediction of both TFs (Figure 3B). To test this hypothesis, we used the GA to                     
generate artificial sequences that minimize the output from unit eight. As expected, the resulting sequences were                
enriched for the CTCF motif (Figure 3D). Moreover, these sequences yielded a high output from units two and                  
nine, both of which are important for the prediction of CTCF. 
Overall, we demonstrate that using GA with CAMs overcomes the limitations associated with motif generation               
from convolutional filters and provides a deeper understanding of what each independent CNN unit is learning. 

 
Figure 3. Artificial Sequences from Genetic 
Algorithm as an alternative to filter-to-PWM 
conversion 
A . Each independent CNN unit is treated as an 
oracle to evaluate the fitness of a sequence. High 
fitness sequences are selected for crossover and 
mutation to obtain the next generation. This 
process is repeated until the average fitness of the 
population converges. 
B. Filter one from CAM for TF binding does not 
correspond to motifs of any TF. Filter eight 
corresponds to CTCF motif but is not important for 
predicting CTCF. 
C. Top: Distribution of outputs for artificial 
sequences optimised for CNN unit one. 
Bottom: Artificial sequences optimised for CNN unit 
one are enriched for zinc finger factors such as 
PLAG1, ZNF263, and RREB1. 
D. Top: Distribution of outputs for artificial 
sequences optimised to produce low output from 
CNN unit eight. 
Bottom: Enrichment of PLAG1 and CTCF motifs in 
these artificial sequences, indicating the usage of 
this unit for the detection of an absence of CTCF 
motif. 

 

 
CAMs identify TF cooperativity 
TFs can bind to adjacent TFBSs to co-regulate gene expression in a phenomenon known as cooperativity 24. We                  
hypothesized that cooperative TFs would be predicted by the same set of CNN units. To test this hypothesis, we                   
trained a CAM with 20 CNN units to predict the binding of six TFs: the chromatin remodelers CTCF, REST, and                    
ZNF143 25,26 and the erythropoietic factors TAL1 and GATA1, and their co-factor TEAD4 27,28. The CAM achieved                 
adequate performance levels for all TFs by means of AUCROC and AUCPR (Figure 4A). Filter visualization                
revealed the individual motifs of CTCF and GATA1, and a composite TAL1-GATA1 motif. Furthermore,              
visualization of the weights from the final layer on a heatmap separated the chromatin remodelers from the                 
erythropoietic factors into two distinct clusters (Figure 4B). These clusters were replicated with sequence level               
predictions (Figure 4C). 
Thus clustering based on CAM final layer weights can be used to identify potential cooperativity between TFs 
 

 
 
Figure 4. CAMs identify potential cooperative TFs 
A. Performance of CAM on the TF binding prediction task of the 
selected cofactors. Confusion matrix and Precision 
Recall/Receiver Operating Characteristics curve for CTCF, 
GATA1, ZNF143, REST, TAL1 and TEAD4.  
B. Visualisation of the output layer weights from CAM. Weights 
are clustered into two groups, corroborating with known 
cooperativity. 
C. Sequence level predictions with CAM (as in Figure 2E). Motif 
representations are highlighted for the most important units.  
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CAMs recover the regulatory landscape of immune cell differentiation 
In a recent work, Maslova et al. used an extensively optimized deep learning model, namely AI-TAC, to study                  
immune cell differentiation in mouse 6. The authors recovered known regulators using model interpretation              
techniques based on filter-to-PWM conversion. Specifically, they established a hierarchy of TFs and their              
interactions responsible for lineage specification by iteratively nullifying each filter. 
To evaluate the interpretation capabilities of our approach, we trained a CAM with 300 CNN units on the same                   
dataset (Figure 5A). We trained the CAM on ~300K ATAC-seq open chromatin regions (OCRs) to predict their                 
accessibility in 81 stem and immune cell types. We observed that the performance of our approach (denoted by                  
correlation between predicted and actual accessibility values) was similar to that of AI-TAC (Figure 5B) without                
any hyperparameter tuning. Moreover, filters from different CNN units corresponded to the motifs of known               
regulators of immune cell differentiation such as PAX5, EBF1, CEBP, SFPI1 and NF-kB (Figure 5C). These                
motifs were recovered consistently across multiple training iterations of the model. 
Visualisation of the weights from the final layer revealed clusters of TFs responsible for lineage specification                
(Figure 5D). Specifically, PAX5 and EBF1 were identified as important for B cells, SPI1 and CEBP for myeloid                  
cell lineages, and TBX20 for NK cells. The T cell lineage was not characterised by any strong cluster of TFs,                    
which is in agreement with the findings from AI-TAC. More exciting was the identification of a group of TFs as                    
important for stem cell lineage, NFIX, HOX and Ascl2 (teal coloured box in Figure 5D) 29,30, which was not                   
detected by AI-TAC. Interestingly, this cluster is also important for early stages of B and abT cell lineages. Using                   
the approach described in the previous section, we looked at TF clusters to identify potential cooperative factors.                 
The analysis revealed known cooperative partners such as PAX5 and EBF1 (red coloured box in Figure 5D),                 
which further demonstrates the utility of CAMs in identifying TF cooperativity. 

 
Figure 5. CAMs recover regulatory 
landscape of immune cell differentiation 
A. Schematic diagram of CAM to predict 
chromatin accessibility across 81 stem and 
immune cell types in mouse. Highlighted in 
yellow is B cell lineage. The CAM is trained 
with 300 CNN units and takes 251 bp long 
DNA sequences as input.  
B. The performance is evaluated by 
calculating the correlation between predicted 
and actual ATAC-seq activity for each input 
sequence. The distribution of this correlation 
is shown for the test set sequences. For 
comparison, the number in bold denotes the 
average correlation of the multilayer AI-TAC 
model on test sequences. 
C. Conversion of filters from independent 
CNN units of CAM discovers motifs of known 
regulators of immune lineage specificity 
including PAX5, EBF1, Cebp, Sfpi1 and 
NK-kb. These motifs were consistently 
obtained in multiple training iterations. 
D. Visualisation of final layer weights reveals 
clusters of TFs responsible for lineage 
specification. Each column in the heatmap 
represents a CNN unit of CAM, some of 
which are annotated to TFs based on motif 
similarity. Highlighted in the teal box is a 
cluster of TFs active in stem cell lineage - 
NFIX, HOX, Ascl2. This cluster was not 
obtained from filter nullification experiments 
in the AI-TAC model. PAX5 and EBF1 are 
clustered together (highlighted in red box) 
and are known cooperative partners 

specifying B cell lineage. 
 

Conclusions 
CAMs achieve global and local interpretability through visualisation of final layer weights and outputs without 
compromising on accuracy. By generating synthetic sequences optimised for each unit of CAM, we overcome the 
limitations associated with filter-to-PWM conversion. Clustering of final layer weights of CAM units can identify 
potential cooperative TFs, without iteratively nullifying combinations of filters. Finally, CAMs successfully recover 
the regulatory landscape of mouse immune cell differentiation without applying any hyperparameter optimisation 
or computationally intensive interpretation techniques. Overall, CAMs offer an easy to use, fully interpretable 
approach to deep learning in genomics. 
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