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Abstract

Prediction of Proteins’ three dimensional structure and their contact maps from their amino-
acid sequences is a fundamental problem in structural computational biology. The structure and
contacts shed light on protein function, enhance our basic understanding of their molecular biology
and may potentially aid in drug design. In recent years we have seen significant progress in protein
contact map prediction from Multiple Sequence Alignments (MSA) of the target protein and its
homologous, using signals of co-evolution and applying deep learning methods.

Homology modelling is a popular and successful approach, where the structure of a protein is
determined using information from known template structures of similar proteins, and has been
shown to improve prediction even in cases of low sequence identity. Motivated by these observations,
we developed Periscope, a method for homology-assisted contact map prediction using a deep
convolutional network. Our method automatically integrates the co-evolutionary information from
the MSA, and the physical contact information from the template structures.

We apply our method to families of CAMEO and membrane proteins, and show improved
prediction accuracy compared to the MSA-only based method RaptorX. Finally, we use our method
to improve the subsequent task of predicting the proteins’ three dimensional structure based on
the (improved) predicted contact map, and show initial promising results in this task too - our
overall accuracy is comparable to the template-based Modeller software, yet the two methods are
complementary and succeed on different targets.

1 Introduction

Computational prediction of a protein three-dimensional structure from its sequence has seen massive
progress lately due to the introduction of new deep learning models (e.g. RaptorX [17] and AlphaFold
[12]). A related problem of homology modelling tackle the same prediction problem, but utilizes
additional available information of known three dimensional structures of proteins that are similar
in sequence to the target protein. These structures serve as templates, and can improve structure
prediction beyond the performance achieved by de-novo structure prediction. Homology modelling
is motivated by the observation that protein tertiary structure varies more slowly than the amino-
acid sequence, hence evolutionary related proteins are likely to have similar structures. Most major
recent de-novo prediction models, including the ones based on deep learning methods, also utilize
evolutionary information, at the protein sequence level, including co-evolution of pairs of amino-
acids [4],[12],[17]. Similarly, recent homology modelling methods use the contact maps predicted from
sequence information [21] to constrain the structure prediction. However, the prediction of the contact
map itself is thus far performed based on sequence only, and structural information from templates is
usually used later when threading the target protein.

Here, we propose a new computational method for homology-based contact map prediction, that
integrates together the sequence information from a Multiple Sequence Alignment (MSA) of a protein
family, and the physical distances between amino-acid pairs for templates with known structure within
this family. The integration is performed using a deep convolutional neural network. The network can
accept as input alignments of different depths and different number of known template structures. Our
method, called Periscope, utilizes both the template 3D structure information, as well as an MSA of
a family of proteins, that is used to produce pairwise evolutionary couplings using methods such as
CCMpred [11] and Evfold[8]. The method integrates together information from evolutionary couplings
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and the template structures into a deep learning architectures, and can be used when either source
of information is more reliable. We evaluated the accuracy of our method in predicting a protein’s
contact-map for membrane proteins and the CAMEO dataset [17]. Our method improve the accuracy
of de-novo contact map prediction. Moreover, the improved contact-map can be used as constraints on
energy-based methods to assist in template-based protein tertiary structure prediction, and can fold
correctly proteins even when other template-based methods like Modeller [18] fail.

2 Methods

Consider a protein with L amino acids. Denote its one-hot amino-acid sequence encoding by S ∈ RL×22
(corresponding to the 20 canonical amino acids, a gap symbol and an "Xaa" symbol for an unknown
amino acid), and its binary contact map by Cp ∈ [0, 1]L×L, where Cp(i, j) denoting that the i-th and j-th
residues are in contact (defined as an Euclidean distance < 8Å between the residues’ Cβ atoms). For
each protein we generate a Multiple Sequence Alignment (MSA)M which is a family of N homologous
proteins. For a subset R ⊂ {1, ..N} of the sequences in the family we also have known reference three
dimensional structures. These structures are used to compute r = |R| ≥ 1 known distance matrices
between amino-acid pairs DR ≡{Di1 ,Di2 , . . .Dir}, with Di1 ,Di2 , . . .Dir ∈ RL×L (we consider only
residues aligned to the target protein, and pad with zeros distances between missing residues). The
homology assisted contact-map prediction problem is defined as follows:
Problem 1. Given an MSAM containing S and a subset of known structures DR with r = |R| ≥ 1,
predict the contact map of the target protein, C. That is, find a mapping f with f(M, DR) = C.

We use a training set of target proteins with known contact maps to learn such a mapping
f̂(Mp, DR) = f(Mp, DR; ŵ), where f has a deep neural network architecture with parameters w.

The Deep Network Architecture:
We designed and implemented a neural network for predicting a protein’s contact map from sequence
and structure information, shown in Figure 1(a.). The network consists of two main modules. In
the first (top) HomologousNet module, we receive as input an L× L× k tensor representing distance
matrices for template structure, and a similar tensor representing MSA-based predicted co-evolutionary
matrices (we used a L × L × 2 tensor with matrices computed using CCMpred [11] and Evfold [8]).
The second (bottom) module recieves as input the target and templates sequences. Each of the two
modules outputs an L×L× k tensor, and these tensors are combined together and processed through
a convolutional deep network to compute the predicted contact map.

Details of the Training Procedure:
Our test data includes the 76 hard CAMEO test proteins, 398 membrane proteins, in similar to [17],
and 41 new hard CAMEO proteins. Our training set is a subset of PDB25 created in April 2020
[15]. We excluded from the training set proteins without a known structure in the alignment, long
proteins (L > 1200), proteins with > 25% sequence identity with any test protein, and proteins with
low-resolution structure (> 2.5Å), leaving us with a dataset of 9332 proteins of which 7463 (80%) were
randomly selected for training and 1869 (20%) for validation. Our loss is a modified binary cross entropy
between our predicted probabilities and the true zero-one contacts, averaged over all residue pairs of
our training proteins. Since our classification problem is imbalanced (most amino-acid pairs don’t form
a contact), we assigned a factor of 5× extra weight to positive residue pairs forming a contact. We train
the model using Adam optimizer [5] for 30 epochs with learning rate η = 0.0001. Each training batch
consisted of a single protein. To generate MSAs we ran HHblits [10] with parameters: "-n 3 -e 1E-3 -
maxfilt∞ -neffmax 20 -nodiff -realign_max∞" [9] (chosen to get deep alignments). As a search library
we used the uniprot20 database released on February 2016 [13]. We used SIFTS mapping [3, 14] to find
solved structures among the homologous proteins (homologous that shared more than 95% sequence
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identity with our target were excluded). The sequences corresponding to these solved structure were
re-aligned with the target structure using ClustalO [7], due to differences between the uniprot and PDB
sequences. Our entire code is available at https://github.com/OmerRonen/Periscope, including a
function for training our model and predicting the contact of a new example using a trained model.
Additional details and documentations are available in the code repository.

a. b.

c.

5ig8b

5bu3D

Figure 1: (a.) A diagram of our deep learning architecture. (b.,c.) The correct and predicted contact
map for the 5bu3D (Cameo76), 5ig8B (Cameo41) proteins respectively. Top-left triangle: Modeller’s
top 2L predictions. Bottom-right triangle: Our top 2L predictions. Gray squares represent missed
contacts, and green squares represent identified contacts, with respect to the reference structure. Red
squares represent wrong predicted contacts not appearing in the reference. Our predictions show more
true positives (green) and less false positives (red), compared to Modeller.

3 Results

Figure 1(b.,c.) demonstrates our contact map predictions for two example proteins, showing that the
co-evolutionary information can be used to predict contacts missed by the homology modelling method
Modeller. We next evaluated systematically our method across datasets. Following [6], for a protein
of length L we evaluate the accuracy of the top L/k(k = 10, 5, 2, 1) predicted contacts. The prediction
accuracy is defined as the percentage of native contacts among the top L/k predicted contacts. We
divide contacts into three groups according to the sequence distance of two residues in a contact: a
contact is short-, medium- and long-range when its sequence distance falls into [6, 11], [12, 23], and
≥ 24, respectively, and report the percentage within each such group (shorter sequence distances ≤ 5
are excluded). We compare our contact accuracy to the RaptorX de-novo contact predictor [17]. We
use tests set from CAMEO41, CAMEO76 and Membrane proteins (see methods). The accuracy for
RaptorX is reported only in bulk, averaging over all families for each dataset. Our accuracy is evaluated
on a slightly different set of proteins due to filtering (see methods). Nevertheless, the comparison shown
in Table 1, is instructive - our method shows higher accuracy across most datasets and distances.
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Method
Short Medium Long

L/10 L/5 L/2 L L/10 L/5 L/2 L L/10 L/5 L/2 L

Membrane: RaptorX 0.60 0.46 0.27 0.16 0.66 0.53 0.33 0.22 0.78 0.73 0.62 0.47

Periscope (268/398) 0.60 0.49 0.30 0.18 0.66 0.55 0.36 0.24 0.76 0.72 0.62 0.49

Cameo41: RaptorX 0.67 0.52 0.32 0.20 0.68 0.58 0.38 0.24 0.82 0.75 0.62 0.46

Periscope (26/41) 0.63 0.51 0.33 0.21 0.64 0.50 0.33 0.22 0.83 0.77 0.61 0.47

Cameo76: RaptorX 0.67 0.57 0.37 0.23 0.69 0.61 0.42 0.28 0.69 0.65 0.55 0.42

Periscope (42/76) 0.68 0.56 0.36 0.23 0.76 0.64 0.43 0.27 0.77 0.70 0.58 0.44

Table 1: Contact prediction accuracy on membrane proteins (with 268 out of 398 proteins predicted
by our method), Cameo41 proteins (26 out of 41), and Cameo76 proteins (42 out of 76).

Contact-assisted protein folding:
A main usage of predicted contact maps is to serve as constraints for energy-based folding algorithm
in order to predict the three-dimensional structure of a protein. We used our predicted contacts,
together with RaptorX-Property[16] predicted secondary structure as input to CNS-suite [2] using the
CONFOLD [1] software, to predict the tertiary structure of proteins. We compared our results to
Modeller, a leading template-based protein folding program using the superposition-dependent score
TMscore [20], that measures the spatial agreement between the predicted and correct structure after
alignment. As an example, the protein 5ig8B was folded with TMScore = 0.66 in our method, and
only 0.22 in Modeller using the same templates (10 in total) (TMScore > 0.5 is usually considered
as "correct fold" [20]). The predicted fold for the Protein 5bu3D (having 6 templates) achieved a
Tmscore of 0.44 using our method and 0.34 using modeller. The TMscores for the closest template
used with our targets were 0.15 for both targets. Out of the 67 proteins we predicted in the Cameo76
and Cameo41 datasets, our method achieved a TMscore > 0.5 in 24 proteins, while modeller achieved
a TMscore > 0.5 in only 21 proteins. Out of our 24 good predictions, 10 were predicted poorly by
modeller (TMscore < 0.5). This result implies that there are cases where our method can be used to
fold proteins when Modeller failed, highlighting the potential for integrating templates with sequence
information for prediction of contact maps and subsequent 3D folding. A more systematic comparison
of the performance of these methods remains for future work.

4 Discussion and Future Work

In this work, we have presented, to the best of our knowledge, the first deep learning architecture for
contact map prediction combining sequence information from MSAs with structural information from
template homologous. While simple, our method can improve the accuracy of sequence-only contact
map predictors, and may aid the correct folding of proteins when other template-based methods fail.
Our framework can easily accommodate multiple improvements. For example, while we focused on
predicting binary contact maps, slight modifications may enable us to predict continuous distances
between amino acids [19], which can improve subsequent structure prediction. It would also be
interesting to combine our method with recent threading-based methods that use the predicted contact
map for homology modelling [21], or include both template and co-evolution information in complete
end-to-end methods such as AlphaFold [12]. Finally, our method can be used to identify the parts of
the different templates that match or disagree with the contact map of the target protein, which can
be used to study the evolution of protein sequence and structure. With the exponential growth in the
number of protein sequences, and the slower growth of experimentally verified structures, we expect
homology-based contact map prediction and modelling to make ever growing impact, and aim to build
upon and improve our method to handle prediction problems at a large scale.
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