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1 Introduction

Segmentation and genome annotation (SAGA) methods are widely used to understand genome
activity and gene regulation [5, 9, 14, 17, 26, 21, 30, 4]. These methods take as input a set
of sequencing-based assays of epigenomic activity and output an annotation of the genome that
assigns a chromatin state label to each genomic position. Existing SAGA methods have several
limitations caused by the discrete annotation framework: such annotations cannot easily represent
varying strengths of genomic elements, and they cannot easily represent combinatorial elements that
simultaneously exhibit multiple types of activity.

In this work, we propose a continuous genome annotation strategy and a method, epigenome-ssm,
that uses a non-negative Kalman filter state space model to efficiently annotate the genome. That is,
our method outputs a vector of real-valued chromatin state features for each genomic position, where
each chromatin state feature putatively represents a different type of activity. Continuous chromatin
state features have a number of benefits over discrete labels. First, chromatin state features preserve
the underlying continuous nature of the input signal tracks, so they preserve more of the information
present in the raw data. Second, in contrast to discrete labels, continuous features can easily capture
the strength of a given element. Third, chromatin state features can easily handle positions with
combinatorial activity by assigning a high weight to multiple features. Fourth, chromatin state
features lend themselves to expressive visualizations because they project complex data sets onto a
small number of dimensions that can be shown in a plot.

The idea of the SSM method was presented at MLCB 2019. This manuscript presents the
following contributions relative to that presentation:

• We present a version of SSM that can be applied to multiple cell types and annotations of
eight cell types.

• We present a new comprehensive evaluation of SSM relative to genes and gene expression, in
comparison to existing SAGA methods (ChromHMM, Segway).
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2 Methods

2.1 State space model

We developed a Kalman filter state space model (SSM) [6] for annotating the genome with chromatin
state features. This model takes as input a vector of E observed genomics data sets for each position,
yg ∈ RE , for g ∈ 1 . . . G. This model assumes that at position g there is a latent vector αg ∈ RM
that encodes the chromatin state features of that position. It assumes that the observed data vector
at that position (yg) is generated as a linear function of αg plus Gaussian noise:

yg = Zαg + εg εg ∼ N(0, I) (1)

It further assumes that the latent vector αg+1 is generated as a linear function of αg plus Gaussian
noise

αg+1 = Tαg + vg vg ∼ N(0, I) (2)

To learn the SSM model, we use the expectation-maximization (EM) algorithm to maximize the
log likelihood of the model as a function of its parameters, Z ∈ RE×M and T ∈ RM×M . Briefly, this
algorithm alternates two steps, the E step and the M step. In the E step, we hold Z and T fixed
and use a message-passing algorithm to efficiently estimate α1:g and compute sufficient statistics
for updates to Z and T . In the M step, we use these sufficient statistics to update Z and T . We
initialized Z ∼ Uniform(0,1)E×M and T = IM .

To limit the model’s capacity to overfit and its sensitivity to local optima, we additionally add
several L2 regularization terms to the optimization’s objective function J(Z, T ), which encourage Z
and T to have small values:

J(Z, T ) = logP (α, Y |Z, T ) + λ1‖Z‖F + λ2‖T‖F . (3)

2.2 Non-negativity constraint

We developed a version of our model, epigenome-ssm-nonneg, in which the chromatin state features
αg and the emission parameters Z are both constrained to be nonnegative.

We used an active set method of Lagrange multipliers to enforce the nonnegativity constraint
[12]. Specifically, we add two Lagrange multiplier terms to our objective function

JΛ(Z, T,ΛZ ,Λα) = J(Z, T ) + tr(ΛTZZ) + tr(ΛTαα). (4)

2.3 Alternative models

We compared epigenome-ssm with well-known annotation methods including Segway and chromHMM.
Segway uses a Dynamic Bayesian Network which assumes that the observed data is generated as
a multivariate Gaussian distribution. As with epigenome-ssm, Segway takes as input a vector of
m observed genomic data sets for each position, yg ∈ Rm, and assigns a discrete label ` to each
position g. chromHMM on the other hand, uses a hidden markov model (HMM) which assumes
that the observed data is generated as a multivariate Bernoulli distribution, and thresholds input
data into binary values such that the input data at position g is represented by a binary vector
ȳg ∈ {0, 1}m. We considered two versions of chromHMM, chromHMM-dis and chromHMM-con. For
chromHMM-dis, we took the discrete labels (`g), while for chromHMM-con, we took the vector of
posterior probabilities α`,g = P (yg = `) generated by chromHMM for each position g.
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3 Results

3.1 Chromatin state features at genes are predictive of gene expression
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Figure (1) Using annotations to predict (a) gene expression and (b) enhancer activity.

To evaluate our methods, we used the resulting annotations (generated using input data from
eight cell types and twelve epigenomic assays) to predict RNA-seq gene expression data, following
previous work [29, 18]. Briefly, We used a linear regression model to evaluate the degree to which
annotations at a gene region are predictive of gene expression. We computed the average feature
vector over the entire gene region [TSS, TTS]. As the regression response value, we used the RNA-seq
RPKM (reads per kb per million mapped reads) values. We used the fraction of variance explained
(adjusted r2, also known as the coefficient of determination) to measure the predictive power of a
regressor. We found that all methods are predictive of gene expression, but epigenome-ssm clearly
outperforms alternatives by this measure (Fig. 1a). For example, with k = 5, an SSM annotation
explains more variance (Adj r2 = 0.64) than both chromHMM and Segway (0.61, 0.60 and 0.60 for
chromHMM-con, chromHMM-dis and Segway respectively). Note that epigenome-ssm performance
with a relatively small number of features (e.g. k = 5) is better than both chromHMM and Segway in
all cases of k. Adding non-negativity constraints to epigenome-ssm reduces the performance slightly
due to the model’s restricted optimization space; however, the constrained model’s performance is
still comparable to other methods.

3.2 Chromatin state features at enhancer elements are predictive of enhancer
activity

We further evaluated these annotation methods by measuring how predictive each annotation
is of experimentally-validated enhancer elements, again following previous work [29]. We used
FANTOM5[11] enhancer RNA data as a measurement of the activity of each enhancer element. As
illustrated by Fig. 1b, epigenome-ssm and epigenome-ssm-nonneg perform significantly better than
both chromHMM and Segway in this task.

3.3 Chromatin state features recapitulate known genome biology

We additionally found that epigenome-ssm features qualitatively recapitulate known genome biology.
Fig. 2a-c show that there is a strong correlation between epigenome-ssm features and the expression
values of the genes. Moreover, the ROC plots generated using epigenome-ssm features to predict
whether a genomic position is TSS, part of a gene, or part of a enhancer (Fig. 2d-f) are clearly
better than those generated using chromHMM-con features (Fig. 2g-i).
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Figure (2) (a-c) Relationship between epigenome-ssm features and gene expression. (d-f) ROC
curves using epigenome-ssm features to predict whether a position is TSS, gene or enhancer respec-
tively. (g-i) Same as (d-f) but using chromHMM-con features.

4 Discussion

In this work we explore the utility of chromatin state feature annotation. We propose a non-negative
Kalman filter state space model for this problem, epigenome-ssm, that produces the highest-quality
continuous annotations of the methods we compared. We also propose several measures of the quality
of a chromatin state feature annotation and we compare the performance of several alternative
methods according to these quality measures. While continuous features are somewhat more
complicated to interpret than discrete labels, we showed that a small number of continuous features
outperform even a large number of discrete labels in all of our evaluations. Therefore, a small number
of chromatin state features can replace a much larger number of discrete labels, decreasing the overall
complexity of the annotation. Moreover, chromatin state features are easy to interpret through
visualizations. Because continuous annotations maintain much more of the information in the input
data than discrete annotations do, they are more useful for complex downstream applications. For
example, a variant effect predictor might take chromatin state features as input in order to predict
the functional impact of a given mutation. In the future, we plan to apply this approach to create
reference chromatin state feature annotations for all tissues with sufficient available data.
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