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Abstract 
Elucida;ng	func;onality	in	 	non-coding	regions	is	a	key	challenge	in	human	genomics.	It	has	been	shown	that	
intolerance	 to	varia;on	of	coding	and	proximal	non-coding	sequence	 is	a	strong	predictor	of	human	disease	
relevance.	Here,	we	integrate	intolerance	to	varia;on,	func;onal	genomic	annota;on	(such	as	methyla;on	and	
chroma;n	 accessibility)	 and	 primary	 genomic	 sequence	 to	 build	 “Junk	 Annota;on”	 Residual	 Varia;on	
Intolerance	 Score	 (JARVIS):	 a	 comprehensive	 deep	 learning	 model	 to	 priori;ze	 non-coding	 regions.	 JARVIS	
outperforms	 comparable	 human	 lineage-specific	 scores	 in	 inferring	 pathogenicity	 of	 non-coding	 variants.	
Furthermore,	 despite	 not	 incorpora;ng	 informa;on	 on	 evolu;onary	 conserva;on,	 JARVIS	 performs	
comparably,	and	in	some	cases,	outperforms,	other	conserva;on-based	scores	in	classifying	pathogenic	single-
nucleo;de	and	structural	variants.	This	provides	a	unique	and	complementary	priori;za;on	paradigm	to	 the	
heavily	relied	upon	phylogene;c	conserva;on-based	predic;ons.	 In	construc;ng	JARVIS,	we	 introduce	a	new	
intolerance	 metric:	 the	 genome-wide	 Residual	 Varia;on	 Intolerance	 Score	 (gwRVIS),	 which	 uses	 a	 sliding-
window	approach	applied	to	Whole	Genome	Sequencing	(WGS)	data	from	62,784	individuals.	gwRVIS	is	among	
the	most	 important	 features	 in	 JARVIS,	 and	 we	 verified	 that	 gwRVIS	 can	 dis;nguish	 sequence	 occupied	 by	
human	Mendelian	disease	genes	from	more	tolerant	CCDS	regions	and	intergenic	sequence.	Both	JARVIS	and	
gwRVIS	capture	previously	inaccessible	human-lineage	constraint	informa;on	to	help	priori;ze	gene;c	variants	
found	 in	 the	human	non-coding	 regulatory	sequence	and	will	enhance	our	understanding	of	 the	non-coding	
genome.		

1	Introduc%on 
The	growing	collec;on	of	human	whole	genome	sequencing	data	has	allowed	researchers	to	iden;fy	stretches	
of	the	genome	that	are	preferen;ally	intolerant	to	gene;c	varia;on.	For	the	protein-coding	component	of	the	
human	genome,	we	now	have	mul;ple	metrics	that	capture	disease	poten;al	at	the	 level	of	the	gene1,2	and	
regions	within	a	gene3,4,5	with	high	confidence.	These	scores	have	transformed	our	ability	to	iden;fy	disease-
causing	muta;ons	 in	the	exome1,6.	However,	the	majority	of	human	gene;c	varia;on	resides	 in	non	protein-
coding	regions	of	the	genome7,8,	and	our	ability	to	interpret	variants	has	been	limited	because	the	func;onal	
importance	of	these	regions	is	largely	unknown.		

Early	 studies	 have	 aeempted	 to	 introduce	 methods	 that	 assess	 intolerance	 to	 muta;on	 in	 the	 non-coding	
genome	 to	 improve	 our	 understanding	 of	 varia;on	 in	 these	 regions.	 While	 these	 metrics	 have	 shown	
promise6,9,10,	their	resolu;on	has	been	limited	due	to	small	sample	sizes	of	whole-genome	sequencing	(WGS)	
reference	cohorts	and	may	be	biased	due	to	strong	dependence	on	evolu;onary	conserva;on	 in	addi;on	to	
human	 constraint	 in	 construc;ng	 non-coding	 intolerance	 scores.	 However,	 regulatory	 elements	 have	 high	
evolu;onary	turnover11,	which	can	obfuscate	the	use	of	conserva;on	to	interpret	varia;on	for	many	regions	in	
the	non-coding	genome.	The	 increasing	sizes	of	WGS	reference	cohorts	now	offers	an	opportunity	 to	assess	
intra-species	human	varia;on	at	an	unprecedented	resolu;on.		

Here,	we	introduce	intolerance	metrics	that	examine	regions	of	the	non-coding	genome	that	may	be	purged	of	
extensive	varia;on	due	to	purifying	selec;on	within	the	human	lineage,	adop;ng	a	larger	reference	set	and	a	
machine	 learning	 based	 approach.	 We	 have	 previously	 introduced	 ncRVIS6,	 which	 quan;fies	 constraint	 in	



proximal	non-coding	regions	such	as	promoters	and	untranslated	regions.	We	first	expand	this	method	to	the	
en;re	 genome	 using	 a	 sliding	window	 approach	 (with	 single	 nucleo;de	 resolu;on)	 to	 create	 genome-wide	
RVIS	 (gwRVIS).	We	 then	 integrate	 genome-wide	 intolerance	with	 informa;on	on	primary	 genomic	 sequence	
and	 addi;onal	 func;onal	 genomic	 annota;on	 to	 build	 a	 novel	 comprehensive	 pathogenicity	 predic;on	
framework	 for	non-coding	variants	 in	 the	human	genome.	We	 inten;onally	do	not	employ	any	conserva;on	
informa;on	for	the	construc;on	of	our	novel	scores.	This	allows	us	to	pinpoint	regions	that	are	more	likely	to	
be	human-specific	in	terms	of	their	func;onal	relevance	and	provide	a	complementary	human-lineage	score	to	
the	many	established	phylogene;c	conserva;on-based	scores.	Our	metrics	aim	to	facilitate	priori;zing	regions	
among	the	non-coding	human	genome	which	when	mutated	may	be	more	likely	to	correlate	with	a	clinically	
relevant	effect.	

2	Methods	

2.1	Genome-wide	Intolerance	to	Varia%on	Score 
We	first	sought	to	construct	a	score	that	captures	the	genome-wide	intolerance	to	varia;on	profile.	We	applied	
a	;led	genome-wide	Residual	Varia;on	Intolerance	Score	(gwRVIS)	to	whole	genome	sequencing	(WGS)	data	
from	62,784	individuals	available	in	the	TOPMed	dataset12	(Freeze5	release).	We	scan	the	en;re	genome	with	a	
sliding-window	 approach	 (using	 a	 1-nucleo;de	 step),	 recording	 the	 number	 of	 all	 variants	 and	 common	
variants,	irrespec;ve	of	their	predicted	effect,	within	each	window,	to	eventually	calculate	a	single-nucleo;de	
resolu;on	genome-wide	intolerance	score.	Taking	into	considera;on	the	largest	segrega;on	achieved	between	
the	 most	 intolerant	 and	 tolerant	 genomic	 classes	 we	 selected	 a	 window	 length	 of	 3kb	 and	 Minor	 Allele	
Frequency	 (MAF)	 threshold	 of	 0.1%.	 We	 then	 fit	 an	 ordinary	 linear	 regression	 model	 to	 predict	 common	
variants	based	on	the	total	number	of	all	variants	found	in	each	window.	Eventually,	we	define	the	studen;sed	
residuals	of	this	regression	model	as	genome-wide	Residual	Varia;on	Intolerance	Score	(gwRVIS),	with	 lower	
gwRVIS	values	corresponding	to	greater	intolerance.			

2.2	 A	 mul%-module	 deep	 learning	 framework	 for	 non-coding	 variant	 pathogenicity	
inference 
Equipped	with	a	novel	human-lineage	specific	constraint	score	that	spans	the	en;re	human	genome	we	next	
sought	 to	 further	 improve	our	ability	 to	priori;ze	noncoding	 sequence	by	 integra;ng	addi;onal	 informa;on	
beyond	gwRVIS.	Thus,	we	integrate	two	addi;onal	layers	of	informa;on:	a)	primary	genomic	sequence	context	
around	 each	 variant	 (unstructured	 data)	 and	 b)	 genomic	 annota;ons	 such	 as	 methyla;on,	 chroma;n	
accessibility	 or	 other	 structured	 features	 extracted	 from	 raw	 genomic	 sequence,	 such	 as	 GC	 content	 and	
mutability	 rate.	 By	 combining	 this	 informa;on	 (gwRVIS,	 primary	 genomic	 sequence	 context	 and	 addi;onal	
genomic	 annota;ons)	 we	 developed	 “Junk	 Annota;on”	 RVIS	 or	 JARVIS:	 a	 mul;-module	 deep	 learning	
framework	for	pathogenicity	 inference	of	non-coding	regions	that	s;ll	 remains	naïve	to	exis;ng	phylogene;c	
conserva;on	 metrics	 in	 its	 score	 construc;on.	 We	 trained	 four	 different	 models	 for	 JARVIS:	 a)	 Gradient	
Boos;ng	using	structured	features	 (i.e.	without	raw	sequence	 informa;on)	b)	 feed-forward	Deep	Neural	Net	
(DNN)	using	structured	features,	c)	Convolu;onal	Neural	Net	(CNN)	with	raw	sequence	input	and	d)	the	mul;-
module	neural	network	model	 that	combines	 informa;on	 from	both	structured	 features	and	 raw	sequences	
(Fig.	1).		

As	 our	 training	 set,	 we	 adopted	 all	 non-coding	 variants	 annotated	 in	 ClinVar	 as	 “Pathogenic”	 or	 “Likely	
pathogenic”	and	a	random	subset	of	“control”	variants	from	denovo-db13,	considered	to	be	benign.	To	build	a	
generic	non-coding	variant	classifica;on	model,	we	integrated	variant	data	from	five	non-coding	regions	during	
training:	 intergenic	 regions,	 UTRs,	 lincRNAs,	 UCNEs	 and	 VISTA	 enhancers.	 The	 mul;-module	 model	
outperformed	all	other	models	used	 for	 training	 JARVIS	on	 the	ClinVar	pathogenic	variant	 set	 ,	 achieving	an	



AUC	of	0.940	with	5-fold	cross-valida;on	(compared	to	AUC	scores	of	0.930,	0.929	and	0.872,	from	the	DNN,	
Gradient	Boos;ng	and	CNN	models,	respec;vely).	Thus,	we	define	as	JARVIS	the	scores	extracted	by	the	mul;-
module	model,	which	comprises	of	a	CNN	module	for	informa;on	inference	from	underlying	sequence	and	a	
feed-forward	DNN	to	assess	structured	feature	data	such	as	gwRVIS,	sequence-derived	features	and	external	
annota;ons.		

Fig	 1.	 JARVIS:	 a	 mul%-module	 deep-learning	 based	 score	 for	 non-coding	 variants	 pathogenicity	 inference	 with	
single-nucleo%de	 resolu%on.	 Deep-learning	 framework	 for	 non-coding	 variants	 pathogenicity	 inference	 based	 on	
different	 types	 of	 annota;on:	 genome-wide	 Residual	 Varia;on	 Intolerance	 Score	 (gwRVIS),	 primary	 genomic	
sequence,	 structured	 features	 extracted	 by	 raw	 genomic	 sequence	 (e.g.	 mutability	 rate,	 GC	 content,	 etc.)	 and	
addi;onal	 annota;ons	 from	 Ensembl	 (e.g.	 histone	 marks,	 chroma;n	 accessibility,	 CTCF	 binding	 sites,	 etc).	 All	
structured	 features	 are	 ini;ally	 passed	 onto	 a	 2-layer	 Deep	 Neural	 Net	 (DNN).	 Primary	 genomic	 sequences	 (in	
windows	of	3kb)	are	 fed	 into	a	deep	Convolu;onal	Neural	Net	and	 then	flaeened	prior	 to	merge	with	 the	higher	
representa;ons	of	the	structured	features	previously	processed	by	the	DNN.	The	combined	higher	representa;ons	of	
features	 are	 processed	 by	 two	 addi;onal	 fully	 connected	 layers,	 followed	 by	 a	 ‘so)max’	 output,	which	 gives	 the	
pathogenicity	likelihood	for	each	input	variant	as	a	probability	score.	

3	Results	

3.1	Stra%fying	the	human	genome	based	on	intolerance	to	varia%on	 
To	determine	biological	relevance	of	gwRVIS	we	first	sought	to	 	confirm	the	ability	of	gwRVIS	to	differen;ate	
between	 different	 classes	 of	 protein-coding	 CCDS	 (Consensus	 Coding	 Sequence)	 windows	 based	 on	 their	
disease	 relevance.	 Despite	 not	 incorpora;ng	 func;onal	 protein-coding	 annota;ons,	 gwRVIS	 manages	 to	
correctly	 stra;fy	different	CCDS	sets	based	on	 their	expected	 levels	of	constraint,	grouping	 them	 in	order	of	
decreasing	intolerance	to	varia;on	as	follows:	OMIM-Haploinsufficient,	25%	most	intolerant	CCDS,	rest	of	CCDS	
and	 25%	most	 tolerant	 CCDS.	We	 then	 studied	 seven	major	 genomic	 classes:	 intergenic	 regions,	 lincRNAs,	
introns,	 CCDS,	UTRs,	 VISTA	 enhancers6	 and	UCNEs,	 listed	 here	 in	 ascending	 order	 of	 inferred	 intolerance	 to	
varia;on.	 The	 intergenic	 gwRVIS	 score	 distribu;on	 emerges	 as	 the	 most	 tolerant	 class	 with	 a	 median	
gwRVIS=-0.0014.	This	median	gwRVIS	closely	aligns	with	the	theore;cal	null	distribu;on	defined	by	gwRVIS=0,	
reflec;ng	an	equal	number	of	observed	and	expected	common	variants.		

Surprisingly,	the	CCDS	protein-coding	region	of	the	genome	was	not	the	most	 intolerant	func;onal	class.	We	
observed	that	Ultra	Conserved	Non-coding	Elements14	(UCNEs;	highly	conserved	non-coding	regions	between	
human	 and	 chicken)	 are	 ranked	 as	 the	 most	 intra-species	 intolerant	 class	 (median	 gwRVIS:	 -0.99;	 Mann-
Whitney	 U	 vs	 intergenic:	 p<1x10-320),	 and	 this	 is	 despite	 gwRVIS	 not	 using	 any	 informa;on	 about	 species	
conserva;on	 in	 its	 construc;on.	 VISTA	 enhancers	 (a	 class	 of	 highly	 conserved	 enhancers	 ac;ve	 during	
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embryonic	development)	and	CCDS	follow	with	the	next	highest	intolerance	to	varia;on	profile,	very	similar	to	
UTRs	(median	gwRVIS:	-0.77,	-0.55	and	-0.51;	Mann-Whitney	U	vs	intergenic:	p<1x10-320	 	for	VISTA	enhancers,	
CCDS	and	UTRs,	respec;vely).	Finally,	introns	and	lincRNAs	have	a	more	tolerant	gwRVIS	score	distribu;on	that	
more	 closely	 resembles	 the	distribu;on	 from	 intergenic	 regions,	but	due	 to	 sheer	 size	of	 the	 corresponding	
score	lists	remains	highly	significant	(median	scores:	-0.050,	-0.0015;	Mann-Whitney	U	vs	intergenic:	p<1x10-320	
and	p=2.6x10-168,	respec;vely).		

3.2	Classifica%on	of	non-coding	pathogenic	variants	based	on	their	intolerance	to	varia%on 
Overall,	 non-coding	 variants	 represent	 a	 small	 frac;on	 of	 all	 pathogenic	 classified	 variants	 residing	 among	
curated	 variant-level	 resources	 such	 as	 ClinVar15.	 Here,	 we	 examine	 the	 proper;es	 of	 gwRVIS	 in	 context	 of	
ClinVar	 clinically-classified	 pathogenic	 non-coding	 variants.	We	 compiled	 two	 lists	 of	 non-coding	 variants:	 a	
pathogenic	set	based	on	ClinVar	and	a	set	of	benign	variants	based	on	the	“control”	variants	from	denovo-db13	
(spanning	 across	 intergenic	 regions,	 lincRNAs,	 VISTA	 enhancers,	 UCNEs	 or	UTRs).	We	 then	 trained	 a	 logis;c	
regression	 model	 with	 5-fold	 Cross-Valida;on,	 using	 gwRVIS	 or	 another	 genome-wide	 score	 (CADD16,	
phastCons46way17,	 phyloP46way18	 and	 Orion)	 as	 the	 only	 independent	 variable	 predictor.	 Remarkably,	 we	
observed	 that	gwRVIS	outperforms	all	 other	 scores	 in	pathogenic	 variant	 classifica;on	 from	 lincRNA	 regions	
(AUC=0.937;	Fig.	 2a)	 and	 intergenic	 regions	 (AUC=0.763;	Fig.	 2b).	 In	UTRs,	 gwRVIS’s	 performance	drops	 but	
remains	considerably	higher	than	Orion	(AUCs:	0.732	versus	0.597;	Fig.	2c).		

In	 order	 to	 es;mate	 the	 novel	 contribu;on	of	 gwRVIS	 informa;on	 in	 non-coding	 variant	 detec;on,	we	 also	
trained	a	mul;ple	logis;c	regression	model	using	gwRVIS	and	CADD	as	the	independent	variables.	We	observe,	
that	gwRVIS	boosts	CADD’s	performance	(Fig.	2)	in	lincRNAs	(AUC:	increased	to	0.937	from	0.	895),	intergenic	
regions	 (AUC:	 increased	to	0.809	 from	0.741)	and	UTRs	 (AUC:	 increased	to	0.835	 from	0.777).	This	 indicates	
that	 gwRVIS	 captures	 novel	 informa;on	 that	 is	 not	 represented	 among	 the	63	dis;nct	 annota;ons/features	
employed	by	CADD.	Moreover,	although	ncRVIS	 is	 the	top	performing	single	score	 in	UTRs	 (AUC=0.823),	 it	 is	
lower	than	the	combined	gwRVIS	and	CADD	score	(AUC=0.835).	

Figure	 2.	 Predic%ve	 power	 of	 gwRVIS	 for	 pathogenic	 variant	 classifica%on.	Mean	 ROC	 curves	 (with	 5-fold	 cross-
valida;on)	from	gwRVIS	benchmarking	against	CADD,	phastCons	(46-way),	phyloP	(46	way)	and	Orion,	during	ClinVar	
pathogenic-vs-benign	variants	classifica;on	for	three	non-coding	genomic	classes:	a)	lincRNAs,	b)	Intergenic	regions	
and	c)	UTRs.	The	combined	performance	of	gwRVIS	with	CADD	is	also	shown.	ncRVIS	is	included	in	the	benchmarking	
of	the	UTR	regions	(c),	as	a	robust	score	specifically	designed	for	the	UTR	genomic	class.	

3.3	JARVIS	performance	on	pathogenicity	likelihood	inference  
We	compared	JARVIS	against	eight	other	popular	genome-wide	scores:	CADD16,	phastCons17	(46way),	phylop18	
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(46way),	DANN19,	LINSIGHT20,	ncER21,	CDTS22	and	Orion9.	It	is	important	to	note	that	ncER,	LINSIGHT,	CADD	and	
DANN	incorporate	mul;ple	phylogene;c	conserva;on	metrics	(e.g.	phyloP,	phastCons,	SiPhy	and	CEGA)	in	their	
score	construc;ons.	We	trained	the	deep	learning-based	mul;-module	JARVIS	model	using	all	ClinVar	non-
coding	pathogenic	variants	across	all	chromosomes	with	5-fold	cross-valida;on	and	compared	its	performance	
against	the	rest	of	the	scores.	JARVIS	outperforms	all	other	scores	(AUC=0.940;	Fig.	3a),	despite	some	of	them	
including	conserva;on	informa;on.	Two	scores,	LINSIGHT	and	ncER,	achieved	beeer	performance	on	this	
dataset	(AUC:	0.961	and	0.977,	respec;vely),	however,	they	are	either	overfit	on	the	JARVIS	training	set	or	
poten;ally	biased	with	addi;onal	informa;on,	such	as	distance	from	the	closest	TSS.	When	integra;ng	the	TSS	
distance	in	the	JARVIS	model,	this	version	of	JARVIS	indeed	exceeds	the	performance	of	both	LINSIGHT	and	
ncER	(AUC=0.984).	However,	we	don’t	eventually	include	TSS	distance	as	a	feature	in	the	final	model	as	we	
want	to	avoid	overfitng	JARVIS	predic;ons	towards	variants	residing	closer	to	protein-coding	regions.	

Based	on	the	performance	of	JARVIS	when	using	different	models	for	training,	we	observed	that	deep	learning	
models	 are	 superior	 to	 Gradient	 Boos;ng	 and	 also	 that	 inclusion	 of	 raw	 sequences	 features	 provides	 the	
highest	predic;ve	power	in	the	pathogenic	variant	classifica;on	task	from	non-coding	regions.	 It	 is,	however,	
difficult	 to	 infer	 the	 real	 contribu;on	 from	 each	 feature	 employed	 by	 the	 full	 deep	 learning-based	 JARVIS	
model.	Thus,	we	employ	an	impurity-based	feature	extrac;on	algorithm	with	a	Gradient	Boos;ng	classifier	as	a	
proxy	 to	 infer	 the	 rela;ve	 contribu;on	 of	 each	 of	 the	 structured	 features.	 We	 observe	 that	 gwRVIS	 ranks	
second	in	feature	importance	while	the	sequence-derived	features,	specifically	CpG	density,	are	the	other	most	
dominant	subset	 from	the	en;re	feature	set	 (Fig.	3b).	Func;onal	annota;ons	 follow	with	 lower	contribu;on	
but	 s;ll	 carrying	 a	 considerable	 burden,	 especially	 for	 certain	 types	 of	 histone	 marks.	 These	 findings	
demonstrate	that	the	genome-wide	intolerance	score,	as	it	is	captured	by	gwRVIS,	adds	considerable	value	to	
the	predic;ve	power	of	JARVIS.		

Fig	 3.	 JARVIS	 cross-valida%on	 performance	 and	 feature	 importance.	 a)	 JARVIS	 performance	 with	 5-fold	 Cross-
Valida;on	auer	 training	with	 a	mul;-module	deep	neural	 network,	 using	 all	 non-coding	ClinVar-based	pathogenic	
variants	and	a	matched	set	of	puta;ve	benign	variants	from	denovo-db.	Variants	used	for	training	belong	to	any	of	
the	 following	genomic	 classes:	 intergenic	 regions,	UTRs,	 lincRNAs,	UCNEs	or	VISTA	enhancers.	A	 total	of	521	non-
coding	pathogenic	variants	have	been	used	for	this	classifica;on	task,	thus	N=1042	represents	the	total	size	of	the	
training	set	 (using	a	 set	of	control	variants	of	equal	 size).	Performance	 for	 the	 rest	of	genome-wide	scores	shown	
here	has	been	calculated	using	a	logis;c	regression	model	with	5-fold	cross-valida;on	on	the	JARVIS	training	set.	b)	
An	overview	of	the	rela;ve	importance	of	the	structured	features	integrated	within	JARVIS,	as	they	are	extracted	by	
a	Gradient	Boos;ng	classifier	following	an	impurity-based	feature	selec;on	algorithm.		
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3.4	Priori%za%on	of	pathogenic	structural	variants	 
Finally,	we	sought	to	es;mate	the	ability	of	JARVIS	and	gwRVIS	to	dis;nguish	large	structural	variants	based	on	
their	inferred	clinical	impacts.	We	employ	for	this	task	a	rich	set	of	structural	variants	(SV)	called	from	14,891	
whole	genome	sequences	in	the	gnomAD	dataset	(v2.1).	Structural	variants	have	been	annotated	with	various	
func;onal	 consequences	 with	 regards	 to	 coding	 or	 proximal-coding	 sequences	 (Copy	 Gain,	 Duplica;on-LoF,	
Intronic,	LoF,	Par;al-Duplica;on,	Promoter,	UTR	and	Whole-Gene	inversion)	or	otherwise	classified	to	have	an	
effect	on	intergenic	regions.	We	consider	the	laeer	case	(SV	in	intergenic	regions)	as	our	benign	set	and	try	to	
classify	 it	 against	 all	 other	 sets	 of	 puta;ve	 pathogenic	 structural	 variants.	 Using	 a	 10-fold	 cross-valida;on	
approach	 with	 a	 logis;c	 regression	 classifier	 for	 all	 benchmarked	 scores,	 JARVIS	 achieved	 the	 highest	
performance	 in	 six	out	of	eight	comparisons	 (Fig.	 	4;	AUC=0.684-0.844),	outperforming	all	other	 scores	 that	
follow	with	lower	AUC	ranges	(Orion:	0.591-0.755;	LINGISHT	AUC:	0.605-0.747;	ncER:	0.448-0.709	and	gwRVIS:	
0.542-0.667,	ordered	by	the	highest	AUC	in	each	range).	

Figure	4.	JARVIS	and	gwRVIS	performance	on	structural	variants.	ROC	curves	from	classifica;on	of	benign	structural	
variants	(intergenic)	against	different	sets	of	puta;ve	pathogenic	ones,	using	a	10-fold	cross-valida;on	approach	with	
a	logis;c	regression	model	on	five	scores:	JARVIS,	gwRVIS,	LINSIGHT,	ncER	and	Orion.		

4	Conclusion 
Several	methods	 have	 been	 developed	 in	 recent	 years	 that	 aeempt	 to	 address	 the	 challenge	 of	 priori;zing	
non-coding	 variants.	Most	of	 these	methods	employ	 a	 combina;on	of	 func;onal	 annota;on	but	 also	 cross-
species	 conserva;on	 informa;on.	 Here,	 we	 presented	 JARVIS	 and	 gwRVIS,	 two	 scores	 that	 encompass	
exclusively	 human	 lineage-specific	 informa;on	 but	 s;ll	manage	 to	 perform	 comparably	 or	 even	 beeer	 than	
conserva;on-informed	scores.	Pathogenicity	likelihood	of	non-coding	regions	cannot	be	efficiently	inferred	by	
cross-species	conserva;on	based	metrics	due	to	the	high	evolu;onary	turnover	of	these	regions.	Thus,	the	two	
human-lineage	 specific	metrics	 we	 introduce	may	 allow	 us	 to	 reduce	 dependence	 on	 conserva;on-derived	
metrics	and	increasingly	rely	on	human	genomic	constraint	in	our	search	for	human	disease	variants.		
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